Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 μm

Ping Yang * Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Ping Yang in
Current site
Google Scholar
PubMed
Close
,
Lei Bi * Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Lei Bi in
Current site
Google Scholar
PubMed
Close
,
Bryan A. Baum Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Bryan A. Baum in
Current site
Google Scholar
PubMed
Close
,
Kuo-Nan Liou Joint Institute for Earth System Science and Engineering, and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Kuo-Nan Liou in
Current site
Google Scholar
PubMed
Close
,
George W. Kattawar Department of Physics and Astronomy, Texas A&M University, College Station, Texas

Search for other papers by George W. Kattawar in
Current site
Google Scholar
PubMed
Close
,
Michael I. Mishchenko NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Michael I. Mishchenko in
Current site
Google Scholar
PubMed
Close
, and
Benjamin Cole * Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Benjamin Cole in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A data library is developed containing the scattering, absorption, and polarization properties of ice particles in the spectral range from 0.2 to 100 μm. The properties are computed based on a combination of the Amsterdam discrete dipole approximation (ADDA), the T-matrix method, and the improved geometric optics method (IGOM). The electromagnetic edge effect is incorporated into the extinction and absorption efficiencies computed from the IGOM. A full set of single-scattering properties is provided by considering three-dimensional random orientations for 11 ice crystal habits: droxtals, prolate spheroids, oblate spheroids, solid and hollow columns, compact aggregates composed of eight solid columns, hexagonal plates, small spatial aggregates composed of 5 plates, large spatial aggregates composed of 10 plates, and solid and hollow bullet rosettes. The maximum dimension of each habit ranges from 2 to 10 000 μm in 189 discrete sizes. For each ice crystal habit, three surface roughness conditions (i.e., smooth, moderately roughened, and severely roughened) are considered to account for the surface texture of large particles in the IGOM applicable domain. The data library contains the extinction efficiency, single-scattering albedo, asymmetry parameter, six independent nonzero elements of the phase matrix (P11, P12, P22, P33, P43, and P44), particle projected area, and particle volume to provide the basic single-scattering properties for remote sensing applications and radiative transfer simulations involving ice clouds. Furthermore, a comparison of satellite observations and theoretical simulations for the polarization characteristics of ice clouds demonstrates that ice cloud optical models assuming severely roughened ice crystals significantly outperform their counterparts assuming smooth ice crystals.

Corresponding author address: Prof. Ping Yang, Department of Atmospheric Sciences, Texas A&M University, TAMU-3150, College Station, TX 77843. E-mail: pyang@tamu.edu

Abstract

A data library is developed containing the scattering, absorption, and polarization properties of ice particles in the spectral range from 0.2 to 100 μm. The properties are computed based on a combination of the Amsterdam discrete dipole approximation (ADDA), the T-matrix method, and the improved geometric optics method (IGOM). The electromagnetic edge effect is incorporated into the extinction and absorption efficiencies computed from the IGOM. A full set of single-scattering properties is provided by considering three-dimensional random orientations for 11 ice crystal habits: droxtals, prolate spheroids, oblate spheroids, solid and hollow columns, compact aggregates composed of eight solid columns, hexagonal plates, small spatial aggregates composed of 5 plates, large spatial aggregates composed of 10 plates, and solid and hollow bullet rosettes. The maximum dimension of each habit ranges from 2 to 10 000 μm in 189 discrete sizes. For each ice crystal habit, three surface roughness conditions (i.e., smooth, moderately roughened, and severely roughened) are considered to account for the surface texture of large particles in the IGOM applicable domain. The data library contains the extinction efficiency, single-scattering albedo, asymmetry parameter, six independent nonzero elements of the phase matrix (P11, P12, P22, P33, P43, and P44), particle projected area, and particle volume to provide the basic single-scattering properties for remote sensing applications and radiative transfer simulations involving ice clouds. Furthermore, a comparison of satellite observations and theoretical simulations for the polarization characteristics of ice clouds demonstrates that ice cloud optical models assuming severely roughened ice crystals significantly outperform their counterparts assuming smooth ice crystals.

Corresponding author address: Prof. Ping Yang, Department of Atmospheric Sciences, Texas A&M University, TAMU-3150, College Station, TX 77843. E-mail: pyang@tamu.edu
Save
  • Arnott, W. P., Y. Dong, J. Hallett, and M. R. Poellot, 1994: Role of small ice crystals in radiative properties of cirrus: A case study, FIRE II, November 22, 1991. J. Geophys. Res., 99 (D1), 13711381.

    • Search Google Scholar
    • Export Citation
  • Auer, A. H., Jr., and D. L. Veal, 1970: The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919926.

  • Baran, A. J., 2009: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transfer, 110, 12391260.

  • Baran, A. J., and S. Havemann, 1999: Rapid computation of the optical properties of hexagonal columns using complex angular momentum theory. J. Quant. Spectrosc. Radiat. Transfer, 63, 499519.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., and P. N. Francis, 2004: On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurements. Quart. J. Roy. Meteor. Soc., 130, 763778.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., and L. C.-Labonnote, 2006: On the reflection and polarization properties of ice cloud. J. Quant. Spectrosc. Radiat. Transfer, 100, 4154.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., and L. C.-Labonnote, 2007: A self-consistent scattering model for cirrus. I: The solar region. Quart. J. Roy. Meteor. Soc., 133, 18991912.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., P. Yang, and S. Havemann, 2001: Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: A comparison of the T-matrix and the finite-difference time-domain methods. Appl. Opt., 40, 43764386.

    • Search Google Scholar
    • Export Citation
  • Barkey, B., K. N. Liou, Y. Takano, W. Gellerman, and P. Sokolsky, 1999: An analog light scattering experiment of hexagonal icelike particles. Part II: Experimental and theoretical results. J. Atmos. Sci., 56, 613625.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, and S. T. Bedka, 2005: Bulk scattering models for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44, 18961911.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, Y.-X. Hu, and Q. Feng, 2010: The impact of ice particle roughness on the scattering phase matrix. J. Quant. Spectrosc. Radiat. Transfer, 111, 25342549, doi:10.1016/j.jqsrt.2010.07.008.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y.-X. Hu, and Z. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteor. Climatol., 50, 10371056.

    • Search Google Scholar
    • Export Citation
  • Bi, L., P. Yang, G. W. Kattawar, and R. Kahn, 2008: Single-scattering properties of tri-axial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes. Appl. Opt., 48, 114126.

    • Search Google Scholar
    • Export Citation
  • Bi, L., P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, 2009: Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm. J. Geophys. Res., 114, D00H08, doi:10.1029/2009JD011759.

    • Search Google Scholar
    • Export Citation
  • Bi, L., P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, 2011a: Diffraction and external reflection by dielectric faceted particles. J. Quant. Spectrosc. Radiat. Transfer, 112, 163173.

    • Search Google Scholar
    • Export Citation
  • Bi, L., P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, 2011b: Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method. J. Quant. Spectrosc. Radiat. Transfer, 112, 14921508.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. John Wiley and Sons, 530 pp.

  • Borovoi, A., I. Grishin, E. Naats, and U. Oppel, 2002: Light backscattering by hexagonal ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 72, 403417.

    • Search Google Scholar
    • Export Citation
  • Buriez, J.-C., C. Vanbauce, F. Parol, P. Goloub, M. Herman, B. Bonnel, Y. Fouquart, P. Couvert, and G. Seze, 1997: Cloud detection and derivation of cloud properties from POLDER. Int. J. Remote Sens., 18, 27852813.

    • Search Google Scholar
    • Export Citation
  • Cai, Q. M., and K. N. Liou, 1982: Theory of polarized light scattering by hexagonal ice crystals. Appl. Opt., 21, 35693580.

  • C.-Labonnote, L., G. Brogniez, J.-C. Buriez, M. Doutriaux-Boucher, J.-F. Gayet, and A. Macke, 2001: Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOS-POLDER measurements. J. Geophys. Res., 106 (D11), 12 139153.

    • Search Google Scholar
    • Export Citation
  • Cole, B. H., P. Yang, B. A. Baum, J. Riedi, L. C.-Labonnote, F. Thieuleux, and S. Platnick, 2013: Comparison of PARASOL observations with polarized reflectances simulated using different ice habit mixtures. J. Appl. Meteor. Climatol., in press.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., M. J. Flynn, Z. Ulanowski, T. W. Choularton, M. W. Gallagher, and K. N. Bower, 2007: Calibration of cloud particle imager probes using calibration beads and ice crystal analogs: The depth of field. J. Atmos. Oceanic Technol., 24, 18601879.

    • Search Google Scholar
    • Export Citation
  • Cox, S. C., and W. H. Munk, 1954: Measurement of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Amer., 44, 838850.

    • Search Google Scholar
    • Export Citation
  • Davis, P. J., and P. Rabinowitz, 1975: Methods of Numerical Integration. Academic Press, 459 pp.

  • de Haan, J. F., P. B. Bosma, and J. W. Hovenier, 1987: The adding method for multiple scattering calculations of polarized light. Astron. Astrophys., 183, 371391.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., S. Havemann, J. C. Thelen, and A. J. Baran, 2007: A new parameterization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM. Atmos. Res., 83, 1934.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., P. Yang, and W. B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11, 22232237.

    • Search Google Scholar
    • Export Citation
  • Gu, Y., J. Farrara, K. N. Liou, and C. R. Mechoso, 2003: Parameterization of cloud-radiation processes in the UCLA general circulation model. J. Climate, 16, 33573370.

    • Search Google Scholar
    • Export Citation
  • Ham, S.-H., B.-J. Sohn, P. Yang, and B. A. Baum, 2009: Assessment of the quality of MODIS cloud products from radiance simulations. J. Appl. Meteor. Climatol., 48, 15911612.

    • Search Google Scholar
    • Export Citation
  • Havemann, S., and A. J. Baran, 2001: Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: Application to hexagonal ice cylinders. J. Quant. Spectrosc. Radiat. Transfer, 70, 139158.

    • Search Google Scholar
    • Export Citation
  • Hess, M., and M. Wiegner, 1994: COP: A data library of optical properties of hexagonal ice crystals. Appl. Opt., 33, 77407746.

  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844.

    • Search Google Scholar
    • Export Citation
  • Hesse, E., and Z. Ulanowski, 2003: Scattering from long prisms computed using ray tracing combined with diffraction on facets. J. Quant. Spectrosc. Radiat. Transfer, 79–80, 721732.

    • Search Google Scholar
    • Export Citation
  • Hong, G., P. Yang, B. A. Baum, A. J. Heymsfield, F. Weng, Q. Liu, G. Heygster, and S. A. Buehler, 2009: Scattering database in the millimeter and submillimeter wave range of 100–1000 GHz for nonspherical ice particles. J. Geophys. Res., 114, D06201, doi:10.1029/2008JD010451.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-L., P. Yang, H. Wei, B. A. Baum, Y. X. Hu, P. Atonelli, and S. A. Ackerman, 2004: Inference of ice cloud properties from high-spectral resolution infrared observations. IEEE Trans. Geosci. Remote Sens., 42, 842853.

    • Search Google Scholar
    • Export Citation
  • Iwabuchi, H., P. Yang, K. N. Liou, and P. Minnis, 2012: Physical and optical properties of persistent contrails: Climatology and interpretation. J. Geophys. Res., 117, D06215, doi:10.1029/2011JD017020.

    • Search Google Scholar
    • Export Citation
  • Kahnert, F. M., 2003: Numerical methods in electromagnetic scattering theory. J. Quant. Spectrosc. Radiat. Transfer, 79–80, 775824.

    • Search Google Scholar
    • Export Citation
  • Key, J. R., P. Yang, B. A. Baum, and S. L. Nasiri, 2002: Parameterization of shortwave ice cloud optical properties for various particle habits. J. Geophys. Res., 107, 4181, doi:10.1029/2001JD000742.

    • Search Google Scholar
    • Export Citation
  • Kim, M.-J., 2006: Single scattering parameters of randomly oriented snow particles at microwave frequencies. J. Geophys. Res., 111, D14201, doi:10.1029/2005JD006892.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K. N. Liou, 2004: Remote sensing of liquid water and ice cloud optical thickness, and effective radius in the Arctic: Application of airborne multispectral MAS data. J. Atmos. Oceanic Technol., 21, 857875.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 11671199.

  • Liou, K. N., 2002: An Introduction to Atmospheric Radiation. 2nd ed. International Geophysical Series, Vol. 84, Academic Press, 583 pp.

  • Liou, K. N., Y. Gu, Q. Yue, and G. McFarguhar, 2008: On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models. Geophys. Res. Lett., 35, L13805, doi:10.1029/2008GL033918.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., Y. Takano, and P. Yang, 2010: On geometric optics and surface waves for light scattering by spheres. J. Quant. Spectrosc. Radiat. Transfer, 111, 19801989, doi:10.1016/j.jqsrt.2010.04.004.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., Y. Takano, and P. Yang, 2011: Light absorption and scattering by aggregates: Application to black carbon and snow grain. J. Quant. Spectrosc. Radiat. Transfer, 112, 15811594, doi:10.1016/j.jqsrt.2011.03.007.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 15631570.

    • Search Google Scholar
    • Export Citation
  • Lynch, D. K., K. Sassen, D. O. Starr, and G. Stephens, 2002: Cirrus. Oxford University Press, 480 pp.

  • Macke, A., 1993: Scattering of light by polyhedral ice crystals. Appl. Opt., 32, 27802788.

  • Macke, A., M. I. Mishchenko, and B. Cains, 1996a: The influence of inclusions on light scattering by large ice particles. J. Geophys. Res., 101 (D18), 23 31123 316.

    • Search Google Scholar
    • Export Citation
  • Macke, A., J. Mueller, and E. Raschke, 1996b: Single scattering properties of atmospheric ice crystal. J. Atmos. Sci., 53, 28132825.

  • Mayer, B., and A. Kylling, 2005: Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys., 5, 18551877.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002: A new parameterization of single-scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions. J. Atmos. Sci., 59, 24582478.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011: CERES Edition-2 cloud property retrievals using TRMM VIRS and TERRA and AQUA MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and A. Macke, 1998: Incorporation of physical optics effects and computations of the Legendre expansion for ray-tracing phase functions involving delta-function transmission. J. Geophys. Res., 103 (D2), 17991805.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and K. Sassen, 1998: Depolarization of lidar returns by small ice crystals: An application to contrails. Geophys. Res. Lett., 25, 309312.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, 1996: T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 55, 535575.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., W. J. Wiscombe, J. W. Hovenier, and L. D. Travis, 2000: Overview of scattering by nonspherical particles. Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Eds., Academic Press, 29–60.

  • Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press, 462 pp.

  • Mitchell, D. L., and W. P. Arnott, 1994: A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology. J. Atmos. Sci., 51, 817832.

    • Search Google Scholar
    • Export Citation
  • Muinonen, K., 1989: Scattering of light by crystals: A modified Kirchhoff approximation. Appl. Opt., 28, 30443050.

  • Nakajima, T. Y., T. Nakajima, K. Yoshimori, S. K. Mishra, and S. N. Tripathi, 2009: Development of a light scattering solver applicable to particles of arbitrary shape on the basis of the surface-integral equations method of Müller type. I. Methodology, accuracy of calculation, and electromagnetic current on the particle surface. Appl. Opt., 48, 35263536.

    • Search Google Scholar
    • Export Citation
  • Nussenzveig, H. M., and W. J. Wiscombe, 1980: Efficiency factors in Mie scattering. Phys. Rev. Lett., 18, 14901494.

  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1980: Microphysics of Clouds and Precipitation. Springer, 714 pp.

  • Schmitt, C. G., and A. J. Heymsfield, 2007: On the occurrence of hollow bullet rosette– and column-shaped ice crystals in midlatitude cirrus. J. Atmos. Sci., 64, 45154520.

    • Search Google Scholar
    • Export Citation
  • Sun, W., Q. Fu, and Z. Chen, 1999: Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions. Appl. Opt., 38, 31413151.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., and K. N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I. Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 319.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., and K. N. Liou, 1995: Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals. J. Atmos. Sci., 52, 818837.

    • Search Google Scholar
    • Export Citation
  • Ulanowski, Z., E. Hesse, P. H. Kaye, and A. J. Baran, 2006: Light scattering by complex ice-analogue crystals. J. Quant. Spectrosc. Radiat. Transfer, 100, 382392.

    • Search Google Scholar
    • Export Citation
  • Um, J. S., and G. M. McFarquhar, 2007: Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteor. Climatol., 46, 757775.

    • Search Google Scholar
    • Export Citation
  • van de Hulst, H. C., 1957: Light Scattering by Small Particles. Dover, 470 pp.

  • Walden, V. P., S. G. Warren, and E. Tuttle, 2003: Atmospheric ice crystals over the Antarctic Plateau in winter. J. Appl. Meteor., 42, 13911405.

    • Search Google Scholar
    • Export Citation
  • Wang, X., K. N. Liou, S. C. Ou, G. G. Mace, and M. Deng, 2009: Remote sensing of cirrus cloud vertical size profile using MODIS data. J. Geophys. Res., 114, D09205, doi:10.1029/2008JD011327.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220, doi:10.1029/2007JD009744.

    • Search Google Scholar
    • Export Citation
  • Wendisch, M., P. Yang, and P. Pilewskie, 2007: Effects of ice crystal habit on the thermal infrared radiative properties and forcing of cirrus clouds. J. Geophys. Res., 112, D08201, doi:10.1029/2006JD007899.

    • Search Google Scholar
    • Export Citation
  • Wendling, P., R. Wendling, and H. K. Weickmann, 1979: Scattering of solar radiation by hexagonal ice crystals. Appl. Opt., 18, 26632671.

    • Search Google Scholar
    • Export Citation
  • Wriedt, T., 2009: Light scattering theories and computer codes. J. Quant. Spectrosc. Radiat. Transfer, 110, 833843.

  • Xie, Y., P. Yang, G. W. Kattawar, B. A. Baum, and Y. Hu, 2011: Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds. Appl. Opt., 50, 10651081.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 1996a: Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J. Opt. Soc. Amer., 13A, 20722085.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 1996b: Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. Appl. Opt., 35, 65686584.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contrib. Atmos. Phys., 71, 223248.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 2009a: Effective refractive index for determining ray propagation in an absorbing dielectric particle. J. Quant. Spectrosc. Radiat. Transfer, 110, 300306.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 2009b: An “exact” geometric-optics approach for computing the optical properties of large absorbing particles. J. Quant. Spectrosc. Radiat. Transfer, 110, 11621177.

    • Search Google Scholar
    • Export Citation
  • Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105 (D4), 46994718.

    • Search Google Scholar
    • Export Citation
  • Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H.-L. Huang, S.-C. Tsay, and S. Ackerman, 2003: Single-scattering properties of droxtals. J. Quant. Spectrosc. Radiat. Transfer, 79–80, 11591169.

    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44, 55125523.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and Coauthors, 2008a: Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties. J. Appl. Meteor. Climatol., 47, 23112330.

    • Search Google Scholar
    • Export Citation
  • Yang, P., G. Hong, G. W. Kattawar, P. Minnis, and Y. Hu, 2008b: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part II—Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size. IEEE Trans. Geosci. Remote Sens., 46, 19481957.

    • Search Google Scholar
    • Export Citation
  • Yang, P., G. Hong, A. E. Dessler, S. C. Ou, K. N. Liou, P. Minnis, and Hashvardhan, 2010: Contrails and induced cirrus: Optics and radiation. Bull. Amer. Meteor. Soc., 91, 473478.

    • Search Google Scholar
    • Export Citation
  • Yee, S. K., 1966: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag., 14, 302307.

    • Search Google Scholar
    • Export Citation
  • Yue, Q., K. N. Liou, S. C. Ou, B. H. Kahn, P. Yang, and G. G. Mace, 2007: Interpretation of AIRS data in thin cirrus atmospheres based on a fast radiative transfer model. J. Atmos. Sci., 64, 38273842.

    • Search Google Scholar
    • Export Citation
  • Yurkin, M. A., A. G. Hoekstra, R. Scott Brock, and J. Q. Lu, 2007a: Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers. Opt. Express, 15, 17 90217 911.

    • Search Google Scholar
    • Export Citation
  • Yurkin, M. A., V. P. Maltsev, and A. G. Hoekstra, 2007b: The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength. J. Quant. Spectrosc. Radiat. Transfer, 106, 546557.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and Coauthors, 2004: Geometric optics solution to light scattering by droxtal ice crystals. Appl. Opt., 43, 24902499.

  • Zhang, Z., P. Yang, G. W. Kattawar, J. Riedi, L. C.-Labonnote, B. A. Baum, S. Platnick, and H.-L. Huang, 2009: Influence of ice particle model on retrieving cloud optical thickness from satellite measurements: model comparison and implication for climate study. Atmos. Chem. Phys., 9, 71157129.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6000 2330 334
PDF Downloads 3060 751 58