• Andreas, E. L, and K. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 37413751.

  • Banner, M. L., and R. P. Morison, 2010: Refined source terms in wind wave models with explicit wave breaking prediction. Part I: Model framework and validation against field data. Ocean Modell., 33 (1–2), 177189.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., J. M. Wilczak, and J.-K. Choi, 2000: Numerical simulations of air–sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 21902210.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., S. A. Michelson, and J. M. Wilczak, 2002: Sensitivity of numerical simulations to parameterizations of roughness for surface heat fluxes at high winds over the sea. Mon. Wea. Rev., 130, 19261932.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88, 357–374.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., 2005: A numerical study of the topographic effects on the structure and rainfall in Hurricane Georges (1998). M.S. thesis, University of Miami, 95 pp.

  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640.

  • Chen, S. S., W. Zhao, J. E. Tenerelli, R. H. Evans, and V. Halliwell, 2001: Impact of the AVHRR sea surface temperature on atmospheric forcing in the Japan/East Sea. Geophys. Res. Lett., 28, 45394542.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. F. Price, W. Zhao, M. A. Donelan, and E. J. Walsh, 2007: The CBLAST-Hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88, 311317.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1990: Air-sea interaction. The Sea: Ocean Engineering Science, B. le Mehaute and D. M. Hanes, Eds., Vol. 9B, Wiley, 239–292.

  • Donelan, M. A., 1998: Air-water exchange processes. Physical Processes in Lakes and Oceans, J. Imberger, Ed., Amer. Geophys. Union, 19–36.

  • Donelan, M. A., 1999: Wind-induced growth ad attenuation of laboratory waves. Wind-over-Wave Couplings: Perspective and Prospects, S. G. Sajadi, N. H. Thomas, and J. C. R. Hunt, Eds., Clarendon Press, 183–194.

  • Donelan, M. A., and W. J. Pierson, 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92 (C5), 49715029.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., F. W. Dobson, S. D. Smith, and R. J. Anderson, 1993: On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 23, 21432152.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, 45394542.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., M. Curcic, S. S. Chen, and A. K. Magnusson, 2012: Modeling waves and wind stress. J. Geophys. Res., 117, C00J23, doi:10.1029/2011JC007787.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., 1995: Coupled ocean wave/atmosphere mesoscale model simulations of cyclogenesis. Tellus, 47A, 766788.

  • Doyle, J. D., 2002: Coupled atmosphere–ocean wave simulations under high-wind conditions. Mon. Wea. Rev., 130, 30873099.

  • Drennan, W. M., J. Zhang, J. R. French, C. McCormick, and P. Black, 2007: Turbulence fluxes in the hurricane boundary. Part II: Latent heat fluxes. J. Atmos. Sci., 64, 11031115.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev.,121, 1493–1513.

  • Emanuel, K., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2003: A similarity hypothesis for air–sea exchange at extreme wind speeds. J. Atmos. Sci., 60, 14201428.

  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transport over the ocean. Global Atmos. Ocean Syst., 2, 154160.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate,16, 571–591.

  • Fan, Y., I. Ginis, and T. Hara, 2009: The effect of wind–wave–current interaction on air–sea momentum fluxes and ocean response in tropical cyclones. J. Phys. Oceanogr., 39, 10191034.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmosphere Boundary Layer. Cambridge University Press, 316 pp.

  • Geernaert, G. L., S. E. Larsen, and F. Hansen, 1987: Measurements of the wind stress, heat flux, and turbulence intensity during storm conditions over the North Sea. J. Geophys. Res.,92 (C12), 13 127–13 139.

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 122 pp.

  • Hara, T., and S. E. Belcher, 2002: Wind forcing in the equilibrium range of wind-wave spectra. J. Fluid Mech., 470, 223245.

  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci.,54, 2519–2541.

  • Houze, R. A., S. S. Chen, B. Smull, W.-C. Lee, and M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 12351239.

    • Search Google Scholar
    • Export Citation
  • Janssen, P.A.E.M., 1991: Quasi-linear theory of wind wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 16311642.

  • Jeong, D., B. K. Haus, and M. A. Donelan, 2012: Enthalpy transfer across the air–water interface in high winds including spray. J. Atmos. Sci., 69, 27332748.

    • Search Google Scholar
    • Export Citation
  • Judt, F., and S. S. Chen, 2010: Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Rita of 2005. J. Atmos. Sci., 67, 35813599.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kudryavtsev, V. N., and V. K. Makin, 2001: The impact of air-flow separation on the drag of the sea surface. Bound.-Layer Meteor., 98, 155171.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., and T. Hara, 2008: The effect of breaking waves on a coupled model of wind and ocean surface waves. Part II: Growing seas. J. Phys. Oceanogr.,38, 2164–2184.

  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336.

  • Lee, C.-Y., and S. S. Chen, 2012: Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere–wave–ocean models and observations. J. Atmos. Sci., 69, 35763594.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air-sea exchanges in heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., 2005: A note on the drag of the sea surface at hurricane winds. Bound.-Layer Meteor., 115, 169176.

  • Monin, A. S., and A. M. Yaglom, 1971: Mechanics of Turbulence. Vol. 1, Statistical Fluid Mechanics, MIT Press, 782 pp.

  • Moon, I.-J., I. Ginis, T. Hara, H. L. Tolman, C. W. Wright, and E. J. Walsh, 2003: Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. J. Phys. Oceanogr., 33, 16801706.

    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., T. Hara, I. Ginis, S. E. Belcher, and H. L. Tolman, 2004: Effect of surface waves on air–sea momentum exchange. Part I: Effect of mature and growing seas. J. Atmos. Sci., 61, 23212333.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. Cambridge University Press, 336 pp.

  • Powell, M. D., 1982: The transition of Hurricane Frederic boundary layer wind field from open Gulf of Mexico to landfall. Mon. Wea. Rev., 110, 19121932.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175.

  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260.

    • Search Google Scholar
    • Export Citation
  • Reul, N., H. Branger, and J.-P. Giovanangeli, 1999: Air flow separation over unsteady breaking waves. Phys. Fluids, 11, 19591961.

  • Rogers, R., S. S. Chen, J. E. Tenerelli, and H. E. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 15771599.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., P. G. Black, J. Haustein, J. W. Fenney, G. Z. Forristall, and J. F. Price, 1987: Ocean response to hurricanes. Part I: Observations. J. Phys. Oceanogr., 17, 20652083.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. H. Dunlap, J. A. Carlson, D. C. Webb, and J. B. Girton, 2005: Autonomous velocity and density profiler: EM-APEX. Proc. IEEE/OES Eighth Working Conf. on Current Measurement Technology, Southampton, United Kingdom, IEEE, 152–156.

  • Shay, L. K., and R. L. Elsberry, 1987: Near-inertial ocean current response to Hurricane Frederic. J. Phys. Oceanogr., 17, 12491269.

  • Shay, L. K., G. J. Goni, F. D. Marks, J. J. Cione, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and J. Simpson, 1993: The Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 1954.

  • Tenerelli, J. E., and S. S. Chen, 2001: High-resolution simulations of Hurricane Floyd using MM5 with vortex-following mesh refinement. Preprints, 18th Conf. on Weather Analysis and Forecasting and 14th Conf. on Numerical Weather Prediction, Ft. Lauderdale, FL, Amer. Meteor. Soc., J54–J56. [Available online at https://ams.confex.com/ams/WAF-NWP-MESO/techprogram/paper_23165.htm.]

  • Toba, Y., N. Iida, H. Kawamura, N. Ebuchi, and I. S. Jones, 1990: Wave dependence of sea-surface stress. J. Phys. Oceanogr.,20, 705–721.

  • Tolman, H. L., 1991: A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr., 21, 782797.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 1999: User manual and system documentation of WAVEWATCH-III version 1.18. NOAA/NWS/NCEP/OMB Tech. Note 166, 110 pp.

  • Tolman, H. L., and D. V. Chalikov, 1996: Source terms in a third generation wind wave model. J. Phys. Oceanogr., 26, 24972518.

  • Tolman, H. L., B. Balasubramaniyan, L. D. Burroughs, D. V. Chalikov, Y. Y. Chao, H. S. Chen, and V. M. Gerald, 2002: Development and implementation of wind generated ocean surface wave models at NCEP. Wea. Forecasting, 17, 311333.

    • Search Google Scholar
    • Export Citation
  • Walsh, E. J., and Coauthors, 2002: Hurricane directional wave spectrum spatial variation at landfall. J. Phys. Oceanogr., 32, 16671684.

    • Search Google Scholar
    • Export Citation
  • Wright, C. W., and Coauthors, 2001: Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr., 31, 24722488.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor.,21, 1594–1609.

  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, doi:10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
  • Zhao, W., and S. S. Chen, 2005: A coupled atmosphere-wave-ocean framework for high-resolution modeling of tropical cyclones and coastal storms. Extended Abstracts,WRF/MM5 Users' Workshop, Boulder, CO, NCAR, 5.5.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 97 97 97
PDF Downloads 17 17 17

Directional Wind–Wave Coupling in Fully Coupled Atmosphere–Wave–Ocean Models: Results from CBLAST-Hurricane

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 2 Environmental Modeling Center, NOAA/National Centers for Environmental Prediction, Camp Springs, Maryland
Restricted access

Abstract

The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The Coupled Boundary Layer Air–Sea Transfer (CBLAST)-Hurricane program is aimed at developing improved coupling parameterizations (using the observations collected during the CBLAST-Hurricane field program) for the next-generation hurricane research prediction models. Hurricane-induced surface waves that determine the surface stress are highly asymmetric, which can affect storm structure and intensity significantly. Much of the stress is supported by waves in the wavelength range of 0.1–10 m, which is the unresolved “spectral tail” in present wave models. A directional wind–wave coupling method is developed to include effects of directionality of the wind and waves in hurricanes. The surface stress vector is calculated using the two-dimensional wave spectra from a wave model with an added short-wave spectral tail. The wind and waves are coupled in a vector form rather than through the traditional roughness scalar. This new wind–wave coupling parameterization has been implemented in a fully coupled atmosphere–wave–ocean model with 1.67-km grid resolution in the atmospheric model, which can resolve finescale features in the extreme high-wind region of the hurricane eyewall. It has been tested in a number of storms including Hurricane Frances (2004), which is one of the best-observed storms during the CBLAST-Hurricane 2004 field program. This paper describes the new wind–wave coupling parameterization and examines the characteristics of the coupled model simulations of Hurricane Frances (2004). Observations of surface waves and winds are used to evaluate the coupled model results.

Current affiliation: Physical Oceanography Lab, Ocean University of China, Qingdao, China.

Corresponding author address: Dr. Shuyi S. Chen, RSMAS/University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: schen@rsmas.miami.edu

Abstract

The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The Coupled Boundary Layer Air–Sea Transfer (CBLAST)-Hurricane program is aimed at developing improved coupling parameterizations (using the observations collected during the CBLAST-Hurricane field program) for the next-generation hurricane research prediction models. Hurricane-induced surface waves that determine the surface stress are highly asymmetric, which can affect storm structure and intensity significantly. Much of the stress is supported by waves in the wavelength range of 0.1–10 m, which is the unresolved “spectral tail” in present wave models. A directional wind–wave coupling method is developed to include effects of directionality of the wind and waves in hurricanes. The surface stress vector is calculated using the two-dimensional wave spectra from a wave model with an added short-wave spectral tail. The wind and waves are coupled in a vector form rather than through the traditional roughness scalar. This new wind–wave coupling parameterization has been implemented in a fully coupled atmosphere–wave–ocean model with 1.67-km grid resolution in the atmospheric model, which can resolve finescale features in the extreme high-wind region of the hurricane eyewall. It has been tested in a number of storms including Hurricane Frances (2004), which is one of the best-observed storms during the CBLAST-Hurricane 2004 field program. This paper describes the new wind–wave coupling parameterization and examines the characteristics of the coupled model simulations of Hurricane Frances (2004). Observations of surface waves and winds are used to evaluate the coupled model results.

Current affiliation: Physical Oceanography Lab, Ocean University of China, Qingdao, China.

Corresponding author address: Dr. Shuyi S. Chen, RSMAS/University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: schen@rsmas.miami.edu
Save