• Chang, C. P., and H. Lim, 1988: Kelvin wave-CISK: A possible mechanism for the 30–50 day oscillation. J. Atmos. Sci., 45, 17091720.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340.

  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropical-extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, C. S., and J. S. Frederiksen, 1992: Northern Hemisphere storm tracks and teleconnection patterns in primitive equation and quasi-geostrophic models. J. Atmos. Sci., 49, 14431458.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 1978: Growth rates and phase speeds of baroclinic waves in multi-level models on a sphere. J. Atmos. Sci., 35, 18161826.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 1981: Scale selection and energy spectra of disturbances in Southern Hemisphere flows. J. Atmos. Sci., 38, 25732584.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 2002: Genesis of intraseasonal oscillations and equatorial waves. J. Atmos. Sci., 59, 27612781.

  • Frederiksen, J. S., and P. J. Webster, 1988: Alternative theories of atmospheric teleconnections and low-frequency fluctuations. Rev. Phys., 26, 459494.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and R. C. Bell, 1990: North Atlantic blocking during January 1979: Linear theory. Quart. J. Roy. Meteor. Soc., 116, 12891313.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and C. S. Frederiksen, 1993: Monsoon disturbances, intraseasonal oscillations, teleconnection patterns, blocking, and storm tracks of the global atmosphere during January 1979: Linear theory. J. Atmos. Sci., 50, 13491372.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and C. S. Frederiksen, 1997: Mechanism of the formation of intraseasonal oscillations and Australian monsoon disturbances: The roles of convection, barotropic and baroclinic instability. Contrib. Atmos. Phys., 70, 3956.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and C. S. Frederiksen, 2007: Interdecadal changes in southern hemisphere winter storm track modes. Tellus, 59A, 599617.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Hayashi, Y., and D. G. Golder, 1993: Tropical 40–50- and 25–30-day oscillations appearing in realistic and idealized GLDL climate models and ECMWF datasets. J. Atmos. Sci., 50, 464494.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1990: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47, 29092923.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life-cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237.

  • Hsu, H. H., 1996: Global view of the intraseasonal oscillation during northern winter. J. Climate, 9, 23862406.

  • Hsu, H. H., B. J. Hoskins, and F.-F. Jin, 1990: The 1985/86 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47, 823839.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., A. J. Majda, and S. N. Stechmann, 2013: Climate science in the tropics: Waves, vortices and PDEs. Nonlinearity, 26, R1, doi:10.1088/0951-7715/26/1/R1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., G. A. Meehl, and K. M. Weickmann, 1994: Large-scale circulation associated with westerly wind bursts and deep convection over the western equatorial Pacific. J. Geophys. Res., 99 (D9), 18 52718 544.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 14071436.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large scale flow. J. Atmos. Sci., 31, 12321240.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: The basic theory. J. Atmos. Sci., 44, 950972.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2007: Intraseasonal variability in a dry atmospheric model. J. Atmos. Sci., 64, 24222441.

  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and R. Mo, 2010: Impact of the Madden–Julian oscillation on wintertime precipitation in Canada. Mon. Wea. Rev., 138, 38223839.

    • Search Google Scholar
    • Export Citation
  • L'Heureux, M. L., and R. W. Higgins, 2008: Boreal winter links between the Madden–Julian oscillation and the Arctic Oscillation. J. Climate, 21, 30403050.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave-CISK and tropical spectra. J. Atmos. Sci., 31, 14471449.

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Matthews, A. J., and G. N. Kiladis, 1999: The tropical–extratropical interaction between high-frequency transients and the Madden–Julian oscillation. Mon. Wea. Rev., 127, 661677.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., G. N. Kiladis, K. M. Weickmann, M. Wheeler, D. S. Gutzler, and G. P. Compo, 1996: Modulation of equatorial subseasonal convective episodes by tropical-extratropical interaction in the Indian and Pacific Ocean regions. J. Geophys. Res., 101 (D10), 15 03315 049.

    • Search Google Scholar
    • Export Citation
  • Mori, M., and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. J. Meteor. Soc. Japan, 86, 213236.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and H.-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51, 18761894.

    • Search Google Scholar
    • Export Citation
  • Neelin, K. K., I. M. Held, and K. H. Cook, 1987: Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348.

    • Search Google Scholar
    • Export Citation
  • Nishi, N., 1989: Observational study on the 30-60 day variations in the geopotential and temperature fields in the equatorial region. J. Meteor. Soc. Japan, 67, 187203.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of Empirical Orthogonal Functions. Mon. Wea. Rev., 110, 699706.

    • Search Google Scholar
    • Export Citation
  • Pan, L.-L., and T. Li, 2008: Interactions between tropical ISO and midlatitude low-frequency flow. Climate Dyn., 31, 375388.

  • Ray, P., and C. Zhang, 2010: A case study of the mechanisms of extratropical influence on the initiation of the Madden–Julian oscillation. J. Atmos. Sci., 67, 515528.

    • Search Google Scholar
    • Export Citation
  • Ray, P., and T. Li, 2013: Relative roles of circumnavigating waves and extratropics on the MJO and its relationship with the mean state. J. Atmos. Sci., 70, 876–893.

    • Search Google Scholar
    • Export Citation
  • Ray, P., C. Zhang, J. Dudhia, and S. S. Chen, 2009: A numerical case study of the initiation of the Madden–Julian oscillation. J. Atmos. Sci., 66, 310331.

    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., M. B. Stoner, N. C. Johnson, M. L. L'Heureux, D. C. Collins, and S. B. Feldstein, 2013: The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Climate Dyn., 40, 1749–1766.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., R. R. Garcia, and H. H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51, 23442367.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and C.-K. Park, 1991: Low-frequency intraseasonal tropical-extratropical interactions. J. Atmos. Sci., 48, 629650.

  • Straus, D. M., and R. S. Lindzen, 2000: Planetary-scale baroclinic instability and the MJO. J. Atmos. Sci., 57, 36093626.

  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433448.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988: Comments on “Air–sea interaction model of intraseasonal oscillation in the tropics.” J. Atmos. Sci., 45, 35213525.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial beta-plane. J. Atmos. Sci., 47, 397413.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., and S. J. S. Khalsa, 1990: The shift of convection from the Indian Ocean to the western Pacific Ocean during a 30–60 day oscillation. Mon. Wea. Rev., 118, 964978.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and J. L. McBride, 2005: Australian-Indonesian monsoon. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Springer, 125–173.

  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., C. Chou, and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. J. Atmos. Sci., 55, 13541372.

    • Search Google Scholar
    • Export Citation
  • Zhang, C. D., 2005: Madden-Julian Oscillation. Rev. Geophys.,43, RG2003, doi:10.1029/2004RG000158.

  • Zhao, C., T. Li, and T. Zhou, 2013: Precursor signals and processes with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291307.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., and A. J. Miller, 2005: The interaction of the Madden–Julian oscillation and the Arctic Oscillation. J. Climate, 18, 143159.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 7 7 7

Tropical–Extratropical Interactions of Intraseasonal Oscillations

View More View Less
  • 1 Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia
  • | 2 Atmospheric Numerical Weather Prediction Research, Environment Canada, Dorval, Quebec, Canada
Restricted access

Abstract

Tropical–extratropical interactions of intraseasonal oscillations (ISOs), based on 30 years (1979–2009) of northern winter observations and theory, are compared. The phase relationships between the tropical signal of the leading theoretical ISO for a January 1979 basic state and the development of Pacific–North America (PNA)-like and North Atlantic Oscillation (NAO) teleconnection patterns are found to compare closely with those for the observed Madden–Julian oscillation (MJO). For both observations and theory positive NAO occurs 5–15 days after MJO convection [negative outgoing longwave radiation (OLR) and positive precipitation] and negative upper-troposphere velocity potential ISO anomalies are focused over the central Indian Ocean. The fluxes of wave activity, based on the upper-troposphere streamfunction of the leading theoretical mode, indicate strong tropical–extratropical interactions and have very similar structures to those obtained by H. Lin et al. based on observations of extratropical anomalies associated with MJO convection.

The second leading theoretical ISO mode for January 1979 has quite similar properties to the leading ISO mode but has a longer period of 44.5 days compared with 34.4 days and a more distinct quadrupole streamfunction structure straddling the equator. Theoretical ISO modes for other observed basic states, including January 1988 and the 30-yr average of January 1980–2009, again link the tropical ISO signal with Northern Hemisphere teleconnection patterns, particularly the NAO. The growth rates of ISO modes increase with stronger baroclinicity of the basic-state zonal winds in the main jet streams and, importantly, with increased tropical–extratropical interactions because of stronger meridional winds.

Corresponding author address: Jorgen S. Frederiksen, Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, 107-121 Station Street, Aspendale 3195 VIC, Australia. E-mail: jorgen.frederiksen@csiro.au

Abstract

Tropical–extratropical interactions of intraseasonal oscillations (ISOs), based on 30 years (1979–2009) of northern winter observations and theory, are compared. The phase relationships between the tropical signal of the leading theoretical ISO for a January 1979 basic state and the development of Pacific–North America (PNA)-like and North Atlantic Oscillation (NAO) teleconnection patterns are found to compare closely with those for the observed Madden–Julian oscillation (MJO). For both observations and theory positive NAO occurs 5–15 days after MJO convection [negative outgoing longwave radiation (OLR) and positive precipitation] and negative upper-troposphere velocity potential ISO anomalies are focused over the central Indian Ocean. The fluxes of wave activity, based on the upper-troposphere streamfunction of the leading theoretical mode, indicate strong tropical–extratropical interactions and have very similar structures to those obtained by H. Lin et al. based on observations of extratropical anomalies associated with MJO convection.

The second leading theoretical ISO mode for January 1979 has quite similar properties to the leading ISO mode but has a longer period of 44.5 days compared with 34.4 days and a more distinct quadrupole streamfunction structure straddling the equator. Theoretical ISO modes for other observed basic states, including January 1988 and the 30-yr average of January 1980–2009, again link the tropical ISO signal with Northern Hemisphere teleconnection patterns, particularly the NAO. The growth rates of ISO modes increase with stronger baroclinicity of the basic-state zonal winds in the main jet streams and, importantly, with increased tropical–extratropical interactions because of stronger meridional winds.

Corresponding author address: Jorgen S. Frederiksen, Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, 107-121 Station Street, Aspendale 3195 VIC, Australia. E-mail: jorgen.frederiksen@csiro.au
Save