• Avramov, A., and J. Harrington, 2010: Influence of parameterized ice habit on simulated mixed-phase Arctic clouds. J. Geophys. Res.,115, D03205, doi:10.1029/2009JD012108.

  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899.

    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., and D. R. Durran, 2008: Selective monotonicity preservation in scalar advection. J. Comput. Phys., 227, 51605183.

  • Bohm, J., 1992: A general hydrodynamic theory for mixed-phase microphysics. Part I: Drag and fall speed of hydrometeors. Atmos. Res., 27, 253274.

    • Search Google Scholar
    • Export Citation
  • Chen, J., and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci., 51, 12061221.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., 1972: Numerical simulation of precipitation development in supercooled cumuli—Part II. Mon. Wea. Rev., 100, 764784.

  • de Boer, G., H. Morrison, M. Shupe, and R. Hildner, 2011: Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors. Geophys. Res. Lett., 38, L01803, doi:10.1029/2010GL046016.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., A. S. Ackerman, G. McFarquhar, G. Zhang, M. R. Poellot, P. J. DeMott, A. J. Prenni, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results. J. Geophys. Res.,112, D24202, doi:10.1029/2007JD008646.

  • Fukuta, N., and T. Takahashi, 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 19631979.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., M. M. Maestas, S. K. Krueger, and C. T. Schmidt, 2009: Acceleration by aerosol of a radiative-thermodynamic cloud feedback influencing Arctic surface warming. Geophys. Res. Lett., 36, L19804, doi:10.1029/2009GL040195.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., G. Frick, S. Malinowski, J.-L. Brenguier, and F. Burnet, 2005: Holes and entrainment in stratocumulus. J. Atmos. Sci., 62, 443459.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W., and H. Morrison, 2008: Toward the mitigation of spurious cloud-edge supersaturation in cloud models. Mon. Wea. Rev., 136, 12241234.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., and P. Q. Olsson, 2001: On the potential influence of ice nuclei on surface-forced marine stratocumulus cloud dynamics. J. Geophys. Res., 106 (D21), 27 47327 484.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., M. P. Meyers, R. L. Walko, and W. R. Cotton, 1995: Parameterization of ice crystal conversion processes due to vapor deposition for mesoscale models using double-moment basis functions. Part I: Basic formulation and parcel model results. J. Atmos. Sci., 52, 43444366.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., T. Reisin, W. R. Cotton, and S. M. Kreidenweis, 1999: Cloud-resolving simulations of Arctic stratus. Part II: Transition-season clouds. Atmos. Res., 51, 4575.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013a: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013b: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. J. Atmos. Sci., 70, 365376.

    • Search Google Scholar
    • Export Citation
  • Koenig, L., 1971: Numerical modeling of ice deposition. J. Atmos. Sci., 28, 226237.

  • Korolev, A., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. Isaac, 2003: Phase transformation of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 1938.

  • Korolev, A., and P. Field, 2008: The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci., 65, 6686.

  • Lamb, D., and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press, 600 pp.

  • Larson, V., K. Kotenberg, and N. Wood, 2007: An analytic longwave radiation formula for liquid layer clouds. Mon. Wea. Rev., 135, 689699.

    • Search Google Scholar
    • Export Citation
  • Libbrecht, K., 2003: Growth rates of principle facets of ice between −10°C and −40°C. J. Cryst. Growth, 247, 530540.

  • Lin, Y., L. Donner, and B. A. Collie, 2011: Parameterization of riming intensity and its impact on ice fall speed using ARM data. Mon. Wea. Rev., 139, 1036–1047.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and M. P. Langleben, 1954: A theory of snow-crystal habit and growth. J. Meteor., 11, 104–120.

  • Meyers, M., P. DeMott, and W. Cotton, 1992: New primary ice nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 2000: Entrainment rate, cloud fraction, and liquid water path of PBL stratocumulus cloud. J. Atmos. Sci., 57, 36273643.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008a: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 13371360.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008b: Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J. Atmos. Sci., 65, 792–812.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Coauthors, 2011: Intercomparison of cloud model simulations of arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE. J. Adv. Model. Earth Syst.,3, M06003, doi:10.1029/2011MS000066.

  • Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117.

    • Search Google Scholar
    • Export Citation
  • Ono, A., 1970: Growth mode of ice crystals in natural clouds. J. Atmos. Sci., 27, 649658.

  • Ovchinnikov, M., A. Korolev, and J. Fan, 2011: Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud. J. Geophys. Res.,116, D00T06, doi:10.1029/2011JD015888.

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic Sciences Library, Vol. 18, Kluwer Academic Publishers, 976 pp.

  • Reisner, J., R. Rasmussen, and R. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107.

    • Search Google Scholar
    • Export Citation
  • Ryan, B., E. Wishart, and D. Shaw, 1976: The growth rates and densities of ice crystals between −3°C and −21°C. J. Atmos. Sci., 33, 842850.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S., W. R. Cotton, D. Lowenthal, R. D. Borys, and M. A. Wetzel, 2009: Influence of cloud condensation nuclei on orographic snowfall. J. Appl. Meteor. Climatol., 48, 903922.

    • Search Google Scholar
    • Export Citation
  • Shipway, B. J., and A. A. Hill, 2012: Diagnosis of systematic differences between multiple parameterizations of warm rain microphysics using a kinematic framework. Quart. J. Roy. Meteor. Soc., 138, 21962211, doi:10.1002/QJ.1913.

    • Search Google Scholar
    • Export Citation
  • Shupe, M., S. Y. Matrosov, and T. Uttal, 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711.

    • Search Google Scholar
    • Export Citation
  • Shupe, M., P. Kollias, P. Persson, and G. McFarquhar, 2008: Vertical motions in Arctic mixed-phase stratiform clouds. J. Atmos. Sci., 65, 13041322.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P., 1984: A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. J. Comput. Phys., 54, 325362.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P., and W. Grabowski, 1990: The multidimensional positive definite advection transport algorithm: Non oscillatory option. J. Comput. Phys., 86, 335375.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., M. Shupe, P. O. G. Persson, and H. Morrison, 2011: Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmos. Chem. Phys., 11, 10 12710 148, doi:10.5194/acp-11-10127-2011.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., R. Walko, W. Cotton, and G. Feingold, 1996: Spurious production of cloud-edge superstations by Eulerian models. Mon. Wea. Rev., 124, 10341041.

    • Search Google Scholar
    • Export Citation
  • Sulia, K., and J. Harrington, 2011: Ice aspect ratio influences on mixed-phase clouds: Impacts on phase partitioning in parcel models. J. Geophys. Res., 116, D21309, doi:10.1029/2011JD016298.

    • Search Google Scholar
    • Export Citation
  • Szumowski, M. J., W. W. Grabowski, and H. T. Ochs, 1998: Simple two-dimensional kinematic framework designed to test warm rain microphysical models. Atmos. Res., 45, 299326.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. Field, R. Rasmussen, and W. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115.

    • Search Google Scholar
    • Export Citation
  • Walko, R., W. Cotton, M. Meyers, and J. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 2962.

    • Search Google Scholar
    • Export Citation
  • Wang, H., W. Skamarock, and G. Feingold, 2009: Evaluation of scalar advection schemes in the Adanced Research WRF model using large-eddy simulations of aerosol–cloud interactions. Mon. Wea. Rev., 137, 25472558.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C., and A. Heymsfield, 2011: Ice crystals growing from vapor in supercooled clouds between −2.5°C and −22°C: Treating current parameterization methods using laboratory data. J. Atmos. Sci., 68, 24162429.

    • Search Google Scholar
    • Export Citation
  • Woods, C., M. Stoelinga, and J. Locatelli, 2007: The IMPROVE-1 storm of 1–2 February 2001. Part III: Sensitivity of a mesoscale model simulation to the representation of snow particle types and testing of a bulk microphysical scheme with snow habit prediction. J. Atmos. Sci., 64, 39273948.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 84 84 84
PDF Downloads 0 0 0

A Method for Adaptive Habit Prediction in Bulk Microphysical Models. Part III: Applications and Studies within a Two-Dimensional Kinematic Model

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

Arctic mixed-phase clouds are ubiquitous, and the persistence of supercooled liquid is not well understood. Prior studies of mixed-phase clouds predict a single axis length assuming spherical particles or mass–dimensional relationships derived from in situ data. These methods cannot mechanistically evolve particle shape, leading to inaccuracies in estimates of mixed-phase lifetime. Parts I and II of this study report on the development and parcel model testing of an adaptive habit parameterization that predicts two bulk crystal lengths. The method is implemented into a two-dimensional kinematic model in which the dynamic flow field is prescribed, allowing for sedimentation and separate advection of length mixing ratios.

Similar to other studies, results show that mass–dimensional relationships produce large variation of phase, despite similar choice in particle type. Results with evolving ice habit promote phase maintenance in cases where mass–dimensional methods glaciate the layers. Adaptive habit simulations with sedimentation increase cloud lifetime at higher ice concentrations but can also lead to lower liquid amounts. Radiative cooling initially increases ice growth with a subsequent enhanced sedimentation flux, altering cloud-phase partitioning dependent on ice concentration. Surface latent and sensible heat fluxes of 50 W m−2 result in an increase in overall water mass, while compensating fluxes establish sufficient energy and mass amounts for liquid and ice maintenance. These studies provide insight into the fluxes that may be necessary for mixed-phase cloud maintenance.

Corresponding author address: Dr. Kara J. Sulia, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: kjs5066@gmail.com

Abstract

Arctic mixed-phase clouds are ubiquitous, and the persistence of supercooled liquid is not well understood. Prior studies of mixed-phase clouds predict a single axis length assuming spherical particles or mass–dimensional relationships derived from in situ data. These methods cannot mechanistically evolve particle shape, leading to inaccuracies in estimates of mixed-phase lifetime. Parts I and II of this study report on the development and parcel model testing of an adaptive habit parameterization that predicts two bulk crystal lengths. The method is implemented into a two-dimensional kinematic model in which the dynamic flow field is prescribed, allowing for sedimentation and separate advection of length mixing ratios.

Similar to other studies, results show that mass–dimensional relationships produce large variation of phase, despite similar choice in particle type. Results with evolving ice habit promote phase maintenance in cases where mass–dimensional methods glaciate the layers. Adaptive habit simulations with sedimentation increase cloud lifetime at higher ice concentrations but can also lead to lower liquid amounts. Radiative cooling initially increases ice growth with a subsequent enhanced sedimentation flux, altering cloud-phase partitioning dependent on ice concentration. Surface latent and sensible heat fluxes of 50 W m−2 result in an increase in overall water mass, while compensating fluxes establish sufficient energy and mass amounts for liquid and ice maintenance. These studies provide insight into the fluxes that may be necessary for mixed-phase cloud maintenance.

Corresponding author address: Dr. Kara J. Sulia, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: kjs5066@gmail.com
Save