• Abarca, S. F., and K. L. Corbosiero, 2011: Secondary eyewall formation in WRF simulations of Hurricanes Rita and Katrina (2005). Geophys. Res. Lett., 38, L07802, doi:10.1029/2011GL047015.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 20232046.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012a: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 3197–3222.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and W. C. Lee, 2012b: An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 69, 24142432.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary-Layer Air–Sea Transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374.

    • Search Google Scholar
    • Export Citation
  • Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15, 192207.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053.

  • Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical-cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731.

    • Search Google Scholar
    • Export Citation
  • Carrier, G. F., 1971a: The intensification of hurricanes. J. Fluid Mech., 49, 145158.

  • Carrier, G. F., 1971b: Swirling flow boundary layers. J. Fluid Mech., 49, 133144.

  • Clark, T. L., and R. D. Farley, 1984: Severe downslope windstorm calculations in two and three spatial dimensions using anelastic grid nesting: A possible mechanism for gustiness. J. Atmos. Sci., 41, 329350.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529.

  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. B. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat fluxes. J. Atmos. Sci., 64, 11031115.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 592 pp.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026.

  • Emanuel, K. A., 2004: Tropical cyclone energetics and structure. Atmospheric Turbulence and Mesoscale Meteorology, E. Fedorovich, R. Rotunno, and B. Stevens, Eds., Cambridge University Press, 165–192.

  • French, J. R., W. M. Drennan, J. A. Zhang, and P. B. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Momentum fluxes. J. Atmos. Sci., 64, 10891102.

    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., and Y. Wang, 2011: Balanced contribution to the intensification of a tropical cyclone simulated in TCM4: Outer-core spinup process. J. Atmos. Sci., 68, 430449.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., 1997: The effects of radiative and microphysical processes on simulated warm and transitional season arctic stratus. Ph.D. dissertation, Colorado State University, 289 pp.

  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane Inez 1966. Mon. Wea. Rev., 104, 418442.

  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: On the role of “vortical” hot towers in formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Hill, G. E., 1974: Factors controlling the size and spacing of cumulus clouds as revealed by numerical experiments. J. Atmos. Sci., 31, 646673.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. S. Chen, B. F. Smull, W. C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 12351239.

    • Search Google Scholar
    • Export Citation
  • Huang, Y. H., M. T. Montgomery, and C. C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197.

  • Judt, F., and S. S. Chen, 2010: Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Rita of 2005. J. Atmos. Sci., 67, 35813599.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., L.-Y. Lin, C.-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 27222734.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., W. H. Schubert, C.-L. Tsai, and Y.-F. Kuo, 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 51835198.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus,14, 148–172.

  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Maclay, K. S., M. DeMaria, and T. H. Vonder Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136, 48824898.

    • Search Google Scholar
    • Export Citation
  • Martinez, Y., G. Brunet, and M. K. Yau, 2010: On the dynamics of two-dimensional hurricane-like concentric rings vortex formation. J. Atmos. Sci., 67, 32533268.

    • Search Google Scholar
    • Export Citation
  • Menelaou, K., M. K. Yau, and Y. Martinez, 2012: On the dynamics of the secondary eyewall genesis in Hurricane Wilma (2005). Geophys. Res. Lett., 39, L04801, doi:10.1029/2011GL050699.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2013: Paradigms for tropical-cyclone intensification. Aust. Meteor. Oceanogr. J., in press.

  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., S. V. Nguyen, and R. K. Smith, 2009: Do tropical cyclones intensify by WISHE? Quart. J. Roy. Meteor. Soc., 135, 16971714.

    • Search Google Scholar
    • Export Citation
  • Nguyen, V. S., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions Quart. J. Roy. Meteor. Soc., 134, 563582.

    • Search Google Scholar
    • Export Citation
  • Nong, S., and K. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricanes. Quart. J. Roy. Meteor. Soc., 129, 33233338.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340.

  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49, 6991.

  • Qiu, X., Z.-M. Tan, and Q. Xiao, 2010: The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 20922109.

    • Search Google Scholar
    • Export Citation
  • Roll, H. U., 1965: Physics of the Marine Atmosphere. International Geophysical Series, Vol. 7, Academic Press, 426 pp.

  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., D. S. Nolan, J. P. Kossin, F. Zhang, and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 2621–2643.

    • Search Google Scholar
    • Export Citation
  • Sanger, N. T., M. T. Montgomery, R. K. Smith, and M. M. Bell, 2013: An observational study of tropical cyclone spinup in Supertyphoon Jangmi (2008) from 24 to 27 September. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697.

  • Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 19841998.

  • Shapiro, L. J., and H. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., J. P. Kossin, C. M. Rozoff, and J. A. Knaff, 2012: Hurricane eyewall replacement cycle thermodynamics and the relict inner eyewall circulation. Mon. Wea. Rev., 140, 4035–4045.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J. S., 1963: General circulation experiments with the primitive equations. Part I: The basic experiment. Mon. Wea. Rev., 91, 99164.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 1968: The surface boundary layer of a hurricane. Tellus, 20, 473484.

  • Smith, R. K., and S. Vogl, 2008: A simple model of the hurricane boundary layer revisited. Quart. J. Roy. Meteor. Soc., 134, 337351.

  • Smith, R. K., and M. T. Montgomery, 2010: Hurricane boundary-layer theory. Quart. J. Roy. Meteor. Soc., 136, 16651670.

  • Smith, R. K., and G. L. Thomsen, 2010: Dependence of tropical cyclone intensification on the boundary-layer representation in a numerical model. Quart. J. Roy. Meteor. Soc., 136, 16711685.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and S. V. Nguyen, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335.

    • Search Google Scholar
    • Export Citation
  • Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112, doi:10.1029/2007JD008897.

    • Search Google Scholar
    • Export Citation
  • Terwey, W. D., S. F. Abarca, and M. T. Montgomery, 2013: Comments on “Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in hurricane Rita of 2005.” J. Atmos. Sci., 70, 984–988.

    • Search Google Scholar
    • Export Citation
  • Thomsen, G., M. T. Montgomery, and R. Smith, 2013: Sensitivity of tropical cyclone intensification to perturbations in the surface drag coefficient Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2048, in press.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, J. L. Harrington, and M. P. Myers, 1995: New RAMS cloud microphysics parameterization. Part I: The single moment scheme. Atmos. Res., 38, 2962.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84 (C6), 31733183.

  • Willoughby, H. E., 1995: Mature structure and evolution. Global perspectives on tropical cyclones, World Meteorological Organization Tech. Doc. WMO/TD-693, 21–62.

  • Willoughby, H. E., and P. G. Black, 1996: Hurricane Andrew in Florida: Dynamics of a disaster. Bull. Amer. Meteor. Soc., 77, 543549.

  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and propagating convective bands in asymmetric hurricanes. J. Atmos. Sci., 41, 31893211.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., Y.-H. Huang, and G.-Y. Lien, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Mon. Wea. Rev., 140, 506527.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129, 92107.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and M. T. Montgomery, 2012: Observational estimates of the horizontal eddy diffusivity and mixing length in the low-level region of intense hurricanes. J. Atmos. Sci., 69, 1306–1316.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy fluxes in the hurricane boundary layer: The CBLAST result. Geophys. Res. Lett., 35, L14813, doi:10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., and B. Wang, 2011: Mechanism of concentric eyewall replacement cycles and associated intensity change. J. Atmos. Sci., 68, 972988.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., B. Wang, X. Ge, and T. Li, 2011: Impact of secondary eyewall heating on tropical cyclone intensity change. J. Atmos. Sci., 68, 450456.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 20
PDF Downloads 9 9 9

Essential Dynamics of Secondary Eyewall Formation

View More View Less
  • 1 Naval Postgraduate School, Monterey, California
Restricted access

Abstract

The authors conduct an analysis of the dynamics of secondary eyewall formation in two modeling frameworks to obtain a more complete understanding of the phenomenon. The first is a full-physics, three-dimensional mesoscale model in which the authors examine an idealized hurricane simulation that undergoes a canonical eyewall replacement cycle. Analysis of the mesoscale simulation shows that secondary eyewall formation occurs in a conditionally unstable environment, questioning the applicability of moist-neutral viewpoints and related mathematical formulations thereto for studying this process of tropical cyclone intensity change. The analysis offers also new evidence in support of a recent hypothesis that secondary eyewalls form via a progressive boundary layer control of the vortex dynamics in response to a radial broadening of the tangential wind field.

The second analysis framework is an axisymmetric, nonlinear, time-dependent, slab boundary layer model with radial diffusion. When this boundary layer model is forced with the aforementioned mesoscale model's radial profile of pressure at the top of the boundary layer, it generates a secondary tangential wind maximum consistent with that from the full-physics, mesoscale simulation. These findings demonstrate that the boundary layer dynamics alone are capable of developing secondary wind maxima without prescribed secondary heat sources and/or invocation of special inertial stability properties of the swirling flow either within or above the boundary layer. Finally, the time-dependent slab model reveals that the simulated secondary wind maximum contracts inward, as secondary eyewalls do in mesoscale models and in nature, pointing to a hitherto unrecognized role of unbalanced dynamics in the eyewall replacement cycle.

Corresponding author address: Dr. Sergio F. Abarca, Department of Meteorology, Naval Postgraduate School, Root Hall, Room 248, 589 Dyer Road, Monterey, CA 93943-5119. E-mail: sfabarca@nps.edu

Abstract

The authors conduct an analysis of the dynamics of secondary eyewall formation in two modeling frameworks to obtain a more complete understanding of the phenomenon. The first is a full-physics, three-dimensional mesoscale model in which the authors examine an idealized hurricane simulation that undergoes a canonical eyewall replacement cycle. Analysis of the mesoscale simulation shows that secondary eyewall formation occurs in a conditionally unstable environment, questioning the applicability of moist-neutral viewpoints and related mathematical formulations thereto for studying this process of tropical cyclone intensity change. The analysis offers also new evidence in support of a recent hypothesis that secondary eyewalls form via a progressive boundary layer control of the vortex dynamics in response to a radial broadening of the tangential wind field.

The second analysis framework is an axisymmetric, nonlinear, time-dependent, slab boundary layer model with radial diffusion. When this boundary layer model is forced with the aforementioned mesoscale model's radial profile of pressure at the top of the boundary layer, it generates a secondary tangential wind maximum consistent with that from the full-physics, mesoscale simulation. These findings demonstrate that the boundary layer dynamics alone are capable of developing secondary wind maxima without prescribed secondary heat sources and/or invocation of special inertial stability properties of the swirling flow either within or above the boundary layer. Finally, the time-dependent slab model reveals that the simulated secondary wind maximum contracts inward, as secondary eyewalls do in mesoscale models and in nature, pointing to a hitherto unrecognized role of unbalanced dynamics in the eyewall replacement cycle.

Corresponding author address: Dr. Sergio F. Abarca, Department of Meteorology, Naval Postgraduate School, Root Hall, Room 248, 589 Dyer Road, Monterey, CA 93943-5119. E-mail: sfabarca@nps.edu
Save