• Barnes, G., G. D. Emmitt, B. Brummer, M. A. LeMone, and S. Nicholls, 1980: The structure of a fair weather boundary layer based on the results of several measurement strategies. Mon. Wea. Rev., 108, 349364.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1997: Trade cumulus: Observations and modeling. The Physics and Parameterization of Moist Atmospheric Convection, R. K. Smith, Ed., Kluwer Academic Publishers, 99–126.

  • Betts, A. K., and B. A. Albrecht, 1987: Conserved variable analysis of the convective boundary layer thermodynamic structure over the tropical oceans. J. Atmos. Sci., 44, 8399.

    • Search Google Scholar
    • Export Citation
  • Cao, G., T. W. Giambelluca, D. E. Stevens, and T. A. Schroeder, 2007: Inversion variability in the Hawaiian trade wind regime. J. Climate, 20, 11451160.

    • Search Google Scholar
    • Export Citation
  • Davison, J. L., R. M. Rauber, L. Di Girolamo, and M. A. LeMone, 2013a: A revised conceptual model of the tropical marine boundary layer. Part I: Statistical characterization of the variability inherent in the wintertime trade wind regime over the western tropical Atlantic. J. Atmos. Sci., 70, 30053024.

    • Search Google Scholar
    • Export Citation
  • Davison, J. L., R. M. Rauber, and L. Di Girolamo, 2013b: A revised conceptual model of the tropical marine boundary layer. Part II: Detecting relative humidity layers using Bragg scattering from S-band radar. J. Atmos. Sci.,70, 3025–3046.

  • Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Hess, 2010: Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224, 28 pp. [Available online at http://www.arl.noaa.gov/documents/reports/arl-224.pdf.]

  • Kloesel, K. A., and B. A. Albrecht, 1989: Low-level inversions over the tropical Pacific—Thermodynamic structure of the boundary layer and the above-inversion moisture structure. Mon. Wea. Rev., 117, 87101.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and P. Zuidema, 1996: Radiative–dynamical consequences of dry tongues in the tropical troposphere. J. Atmos. Sci., 53, 620638.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in Shallow Cumulus over the Ocean: The RICO Campaign. Bull. Amer. Meteor. Soc., 88, 19121928.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219.

    • Search Google Scholar
    • Export Citation
  • Snodgrass, E. R., L. Di Girolamo, and R. M. Rauber, 2009: Precipitation characteristics of trade wind clouds during RICO derived from radar, satellite, and aircraft measurements. J. Appl. Meteor. Climatol., 48, 464483.

    • Search Google Scholar
    • Export Citation
  • Sommeria, G., and M. A. LeMone, 1978: Direct testing of a three-dimensional model of the planetary boundary layer against experimental data. J. Atmos. Sci., 35, 2539.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2006: Bulk boundary layer concepts for simplified models of tropical dynamics. Theor. Comput. Fluid Dyn., 20, 279304.

  • Stevens, B., and Coauthors, 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58, 18701891.

  • VanZanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst.,3, M06001, doi:10.1029/2011MS000056.

  • Zhao, G., and L. Di Girolamo, 2007: Statistics on the macrophysical properties of trade wind cumuli over the tropical western Atlantic. J. Geophys. Res., 112, D10204, doi:10.1029/2006JD007371.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2012: On trade wind cumulus cold pools. J. Atmos. Sci., 69, 258280.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 93 93 93
PDF Downloads 4 4 4

A Revised Conceptual Model of the Tropical Marine Boundary Layer. Part III: Bragg Scattering Layer Statistical Properties

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

This paper examines the structure and variability of the moisture field in the tropical marine boundary layer (TMBL) as defined by Bragg scattering layers (BSLs) observed with S-band radar. Typically, four to five BSLs were present in the TMBL, including the transition layer at the top of the surface-based mixed layer. The transition-layer depth (~350 m) exhibited a weak diurnal cycle because of changes in the mixed-layer depth. BSLs and the “clear” layers between them each had a median thickness of about 350 m and a lifetime over the radar of 8.4 h, with about 25% having lifetimes longer than 20 h. More (fewer) BSLs were present when surface winds had a more southerly (northerly) component. Both BSLs and clear layers increased in depth with increasing rain rates, with the rainiest days producing layers that were about 100 m thicker than those on the driest days. The analyses imply that the relative humidity (RH) field in the TMBL exhibits layering on scales observable by radar. Satellite and wind profiler measurements show that the layered RH structure is related, at least in part, to detraining cloudy air.

Based on analyses in this series of papers, a revised conceptual model of the TMBL is presented that emphasizes moisture variability and incorporates multiple moist and dry layers and a higher TMBL top. The model is supported by comparing BSL tops with satellite-derived cloud tops. This comparison suggests that the layered RH structure is related, in part, to cloud detrainment at preferred altitudes within the TMBL. The potential ramifications of this change in TMBL conceptualization on modeling of the TMBL are discussed.

Corresponding author address: Jennifer L. Davison, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: jdavison@earth.uiuc.edu

Abstract

This paper examines the structure and variability of the moisture field in the tropical marine boundary layer (TMBL) as defined by Bragg scattering layers (BSLs) observed with S-band radar. Typically, four to five BSLs were present in the TMBL, including the transition layer at the top of the surface-based mixed layer. The transition-layer depth (~350 m) exhibited a weak diurnal cycle because of changes in the mixed-layer depth. BSLs and the “clear” layers between them each had a median thickness of about 350 m and a lifetime over the radar of 8.4 h, with about 25% having lifetimes longer than 20 h. More (fewer) BSLs were present when surface winds had a more southerly (northerly) component. Both BSLs and clear layers increased in depth with increasing rain rates, with the rainiest days producing layers that were about 100 m thicker than those on the driest days. The analyses imply that the relative humidity (RH) field in the TMBL exhibits layering on scales observable by radar. Satellite and wind profiler measurements show that the layered RH structure is related, at least in part, to detraining cloudy air.

Based on analyses in this series of papers, a revised conceptual model of the TMBL is presented that emphasizes moisture variability and incorporates multiple moist and dry layers and a higher TMBL top. The model is supported by comparing BSL tops with satellite-derived cloud tops. This comparison suggests that the layered RH structure is related, in part, to cloud detrainment at preferred altitudes within the TMBL. The potential ramifications of this change in TMBL conceptualization on modeling of the TMBL are discussed.

Corresponding author address: Jennifer L. Davison, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: jdavison@earth.uiuc.edu
Save