• Davey, M. K., and A. E. Gill, 1987: Experiments on tropical circulation with a simple moist model. Quart. J. Roy. Meteor. Soc., 113, 12371269.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340.

  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54, 23732386.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2000: Impact of air–sea coupling on the Madden–Julian oscillation in a general circulation model. J. Atmos. Sci., 57, 39393952.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237.

  • Hendon, H. H., and J. Glick, 1997: Intraseasonal air–sea interaction in the tropical Indian and Pacific oceans. J. Climate, 10, 647661.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., 1986: Unstable and damped equatorial modes in simple coupled ocean–atmosphere models. J. Atmos. Sci., 43, 606630.

  • Houze, R. A., Jr., S. S. Chen, D. E. Kingsmill, Y. Serra, and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57, 30583089.

    • Search Google Scholar
    • Export Citation
  • Inness, P. M., J. M. Slingo, E. Guilyardi, and J. Cole, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16, 365382.

    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, and C. Gautier, 1998: The influence of the Madden–Julian oscillation on ocean surface heat fluxes and sea surface temperature. J. Climate, 11, 10571072.

    • Search Google Scholar
    • Export Citation
  • Kawamura, R., 1988: Intraseasonal variability of sea surface temperature over the tropical western Pacific. J. Meteor. Soc. Japan, 66, 10071012.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2008: Equatorial convectively coupled waves in a simple multicloud model. J. Atmos. Sci., 65, 33763397.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2010: Spatiotemporal wavelet transform and the multiscale behavior of the Madden–Julian oscillation. J. Climate, 23, 38143834.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and K. M. Weickmann, 1987: 30-60-day atmospheric oscillation: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 14071436.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., D. K. Oosterhof, and A. V. Mehta, 1988: Air–sea interaction on the time scale of 30 to 50 days. J. Atmos. Sci., 45, 13041322.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and C. H. Sui, 1997: Mechanisms of short-term sea surface temperature regulation: Observations during TOGA COARE. J. Climate, 10, 465472.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of the sea surface temperature gradients in forcing low-level winds and convergence in the Tropics. J. Atmos. Sci., 44, 24402458.

    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2012a: A frictional skeleton model for the Madden–Julian oscillation. J. Atmos. Sci., 69, 27492758.

  • Liu, F., and B. Wang, 2012b: A model for the interaction between 2-day waves and moist Kelvin waves. J. Atmos. Sci., 69, 611625.

  • Liu, F., and B. Wang, 2012c: Impacts of upscale heat and momentum transfer by moist Kelvin waves on the Madden–Julian oscillation: A theoretical model study. Climate Dyn., 40, 213–224, doi:10.1007/s00382-011-1281-0.

    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2012d: A conceptual model for self-sustained active-break Indian summer monsoon. Geophys. Res. Lett.,39, L20814, doi:10.1029/2012GL053663.

  • Madden, R. A., and P. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2011: Nonlinear dynamics and regional variations in the MJO skeleton. J. Atmos. Sci., 68, 30533071.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., A. H. Sobel, and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 2, 124.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 15211538.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823836.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1989: On the interpretation of the Gill model. J. Atmos. Sci., 46, 24662468.

  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348.

    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, and C. Penland, 2009: How important is air–sea coupling in ENSO and MJO evolution? J. Climate, 22, 29582977.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., T. Yamagata, and R. C. Pacanowski, 1984: Unstable air–sea interactions in the tropics. J. Atmos. Sci., 41, 604613.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132.

  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357379.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the tropics. J. Atmos. Sci., 51, 22072224.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., P. Inness, R. Neale, S. Woolnough, and G.-Y. Yang, 2003: Scale interaction on diurnal to seasonal timescales and their relevance to model systematic errors. Ann. Geophys., 46, 139155.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, and J. H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333358.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990a: Synoptic climatology of transient tropical intraseasonal convection anomalies. Meteor. Atmos. Phys., 44, 4361.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990b: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial beta-plane. J. Atmos. Sci., 47, 397413.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1993: A simple tropical atmosphere model of relevance to short-term climate variation. J. Atmos. Sci., 50, 260284.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 13861400.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286.

  • Wang, B., and X. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air–sea interaction in maintaining Madden–Julian oscillation. J. Climate, 11, 21162135.

    • Search Google Scholar
    • Export Citation
  • Wang, B., T. Li, and P. Chang, 1995: An intermediate model of the tropical Pacific Ocean. J. Phys. Oceanogr., 25, 15991616.

  • Wang, B., P. J. Webster, and H. Teng, 2005: Antecedents and self-induction of the active-break south Asian monsoon unraveled by satellites. Geophys. Res. Lett.,32, L04704, doi:10.1029/2004GL020996.

  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1986: Atmospheric convergence feedback in a simple model for El Niño. Mon. Wea. Rev., 114, 12631271.

  • Zhang, C., 1996: Atmospheric intraseasonal variability at the surface in the western Pacific Ocean. J. Atmos. Sci., 53, 739785.

  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 42, G2003, doi:10.1029/2004RG000158.

  • Zhang, C., and M. Dong, 2004: Seasonality of the Madden–Julian oscillation. J. Climate, 17, 31693180.

  • Zhou, L., R. B. Neale, M. Jochum, and R. Murtugudde, 2012: Improved Madden–Julian oscillations with improved physics: The impact of modified convection parameterizations. J. Climate, 25, 11161136.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 2 2 2

An Air–Sea Coupled Skeleton Model for the Madden–Julian Oscillation

View More View Less
  • 1 International Pacific Research Center, and Department of Meteorology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
Restricted access

Abstract

This work is an extension and improvement of the minimal Madden–Julian oscillation (MJO) “skeleton” model developed by Majda and Stechmann, which can capture some important features of the MJO—slow eastward propagation, quadrupole-vortex structure, and independence of frequency on wavelength—but is unable to produce unstable growth and selection of eastward-propagating planetary waves. With the addition of planetary boundary layer frictional moisture convergence, these deficiencies can be remedied. The frictional boundary layer “selects” the planetary-scale eastward propagation as the most unstable mode, but the dynamics remains confined to atmospheric processes only. Here the authors study the role of air–sea interaction by implementing an oceanic mixed-layer (ML) model of Wang and Xie into the MJO skeleton model. In this new air–sea coupled skeleton model, the features of the original skeleton model remain; additionally, the air–sea interaction under mean westerly winds is shown to produce a strong instability that selectively destabilizes the eastward-propagating planetary-scale waves. Although the cloud–shortwave radiation–sea surface temperature (CRS) feedback destabilizes both eastward and westward modes, the air–sea feedback associated with the evaporation and oceanic entrainment favors planetary-scale eastward modes. Over the Western Hemisphere where easterly background winds prevail, the evaporation and entrainment feedbacks yield damped modes, indicating that longitudinal variation of the mean surface winds plays an important role in regulation of the MJO intensity in addition to the longitudinal variation of the mean sea surface temperature or mean moist static stability. This theoretical analysis suggests that accurate simulation of the climatological mean state is critical for capturing the realistic air–sea interaction and thus the MJO.

School of Ocean and Earth Science and Technology Contribution Number 8946 and International Pacific Research Center Publication Number 986.

Corresponding author address: Dr. Bin Wang, IPRC and Department of Meteorology, University of Hawai‘i at Mānoa, 401 POST Bldg, 1680 East-West Road, Honolulu, HI 96822. E-mail: wangbin@hawaii.edu

Abstract

This work is an extension and improvement of the minimal Madden–Julian oscillation (MJO) “skeleton” model developed by Majda and Stechmann, which can capture some important features of the MJO—slow eastward propagation, quadrupole-vortex structure, and independence of frequency on wavelength—but is unable to produce unstable growth and selection of eastward-propagating planetary waves. With the addition of planetary boundary layer frictional moisture convergence, these deficiencies can be remedied. The frictional boundary layer “selects” the planetary-scale eastward propagation as the most unstable mode, but the dynamics remains confined to atmospheric processes only. Here the authors study the role of air–sea interaction by implementing an oceanic mixed-layer (ML) model of Wang and Xie into the MJO skeleton model. In this new air–sea coupled skeleton model, the features of the original skeleton model remain; additionally, the air–sea interaction under mean westerly winds is shown to produce a strong instability that selectively destabilizes the eastward-propagating planetary-scale waves. Although the cloud–shortwave radiation–sea surface temperature (CRS) feedback destabilizes both eastward and westward modes, the air–sea feedback associated with the evaporation and oceanic entrainment favors planetary-scale eastward modes. Over the Western Hemisphere where easterly background winds prevail, the evaporation and entrainment feedbacks yield damped modes, indicating that longitudinal variation of the mean surface winds plays an important role in regulation of the MJO intensity in addition to the longitudinal variation of the mean sea surface temperature or mean moist static stability. This theoretical analysis suggests that accurate simulation of the climatological mean state is critical for capturing the realistic air–sea interaction and thus the MJO.

School of Ocean and Earth Science and Technology Contribution Number 8946 and International Pacific Research Center Publication Number 986.

Corresponding author address: Dr. Bin Wang, IPRC and Department of Meteorology, University of Hawai‘i at Mānoa, 401 POST Bldg, 1680 East-West Road, Honolulu, HI 96822. E-mail: wangbin@hawaii.edu
Save