• de Gouw, J., C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, and R. Fall, 2003: Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry. Int. J. Mass Spectrom., 223, 365382.

    • Search Google Scholar
    • Export Citation
  • Desjardins, R. L., and Coauthors, 1997: Scaling up flux measurements for the boreal forest using aircraft-tower combinations. J. Geophys. Res.,102 (D24), 29 125–29 133.

  • Faloona, I., and Coauthors, 2005: Observations of entrainment in eastern Pacific marine stratocumulus using three conserved scalar. J. Atmos. Sci., 62, 32683285.

    • Search Google Scholar
    • Export Citation
  • Goldstein, A. H., and I. E. Galbally, 2007: Known and unexplored organic constituents in the Earth's atmosphere. Environ. Sci. Technol., 4, 1514152.

    • Search Google Scholar
    • Export Citation
  • Greenberg, J. P., A. Guenther, P. Zimmerman, W. Baugh, C. Geron, K. Davis, D. Helmig, and L. F. Klinge, 1999: Tethered balloon measurements of biogenic VOCs in the atmospheric boundary layer. Atmos. Environ., 33, 855867.

    • Search Google Scholar
    • Export Citation
  • Guenther, A., C. N. Hewitt, D. Erickson, and R. Fall, 1995: A global model of natural volatile organic compound emissions. J. Geophys. Res., 100 (D5), 88738892.

    • Search Google Scholar
    • Export Citation
  • Guenther, A., J. Greenberg, P. Harley, D. Helmig, L. Klinger, L. Vierling, P. Zimmerman, and C. Geron, 1996: Leaf, branch, stand and landscape scale measurements of volatile organic compound fluxes from U.S. woodlands. Tree Physiol., 16, 1724.

    • Search Google Scholar
    • Export Citation
  • Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 31813210.

    • Search Google Scholar
    • Export Citation
  • Hamba, A., 1993: Modified K model for chemically reactive species in the planetary boundary layer. J. Geophys. Res., 98 (D3), 51735182.

    • Search Google Scholar
    • Export Citation
  • Hofzumahaus, A., and Coauthors, 2009: Amplified trace gas removal in the troposphere. Science, 324, 17021704, doi:10.1126/science.1164566.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, J. Dudhia, S. Korea, and M. M. Division, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134,23182341.

    • Search Google Scholar
    • Export Citation
  • Karl, T., C. Spirig, P. Prevost, C. Stroud, J. Rinne, J. Greenberg, R. Fall, and A. Guenther, 2002: Virtual disjunct eddy covariance measurements of organic trace compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry. Atmos. Chem. Phys., 2, 279291.

    • Search Google Scholar
    • Export Citation
  • Karl, T., A. Guenther, R. J. Yokelson, J. Greenberg, M. Potosnak, D. R. Blake, and P. Artaxo, 2007: The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. J. Geophys. Res., 112, D18302, doi:10.1029/2007JD008539.

    • Search Google Scholar
    • Export Citation
  • Karl, T., E. Apel, A. Hodzic, D. Riemer, D. Blake, and C. Wiedinmyer, 2009: Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity. Atmos. Chem. Phys., 9, 271285.

    • Search Google Scholar
    • Export Citation
  • Kim, A., and Coauthors, 2013: Evaluation of HOx sources and cycling using measurement constrained model calculations in a MBO and monoterpene dominated ecosystem. Atmos. Chem. Phys.,13, 2031–2044.

  • Kristensen, L., C. E. Andersen, and H. E. Jørgensen, 1997: First-order chemistry in the surface-flux layer. J. Atmos. Chem., 2, 249269.

    • Search Google Scholar
    • Export Citation
  • Lelieveld, J., and Coauthors, 2008: Atmospheric oxidation capacity sustained by a tropical forest. Nature, 452, 737740, doi:10.1038/nature06870.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and L. Kristensen, 1985: Uncorrelated noise in turbulence measurements. J. Atmos. Oceanic Technol., 2, 6881.

  • Lenschow, D. H., C. A. Cullian, R. B. Friese, and E. N. Brown, 1978: The status of air motion measurements on NCAR aircraft. Proc. Fourth Symp. on Meteorological Observations and Instrumentation, Denver, CO, Amer. Meteor. Soc., 433438.

  • Lenschow, D. H., A. C. Delany, B. B. Stankov, and D. H. Stedman, 1980: Airborne measurements of the vertical flux of ozone in the boundary layer. Bound.-Layer Meteor., 19, 249265.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., J. Mann, and L. Kristensen, 1994: How long is long enough when measuring fluxes and other turbulence statistics. J. Atmos. Oceanic Technol., 11, 661673.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., and I. C. Jao, 1995: A numerical study of flow circulations in the Central Valley of California and formation mechanisms of the Fresno eddy. Mon. Wea. Rev., 123, 32273239.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., X. San Liang, and R. H. Weisberg, 2007: Rectification of the bias in the wavelet power spectrum. J. Atmos. Oceanic Technol., 24, 20932102.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., R. L. Desjardins, and I. MacPherson, 2007: Scale analysis of airborne flux measurements over heterogeneous terrain in a boreal ecosystem. J. Geophys. Res., 112, D13112, doi:10.1029/2006JD008133.

    • Search Google Scholar
    • Export Citation
  • Mauldin, R. L., III, and Coauthors, 2012: A new atmospherically relevant oxidant of sulphur dioxide. Nature, 488, 193196, doi:10.1038/nature11278.

    • Search Google Scholar
    • Export Citation
  • Metzger, S., and Coauthors, 2012: Spatial resolution and regionalization of airborne flux measurements using environmental response functions. Biogeosci. Discuss., 9, 15 93716 003.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear and buoyant driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022.

    • Search Google Scholar
    • Export Citation
  • Patton, E. G., K. J. Davis, M. C. Barth, and P. P. Sullivan, 2000: Decaying scalars emitted by a forest canopy: A numerical study. Bound.-Layer Meteor., 100, 91129.

    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, and K. J. Davis, 2003: The influence of a forest canopy on top-down and bottom-up diffusion in the planetary boundary layer. Quart. J. Roy. Meteor. Soc., 129, 14151434, doi:10.1256/qj.01.175.

    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, and C. H. Moeng, 2005: The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci., 62, 20782097.

    • Search Google Scholar
    • Export Citation
  • Petersen, A. C., and A. M. Holtslag, 1999: A first-order closure for covariances and fluxes of reactive species in the convective boundary layer. J. Appl. Meteor., 38, 17581776.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., 1989: Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmos. Environ., 23, 17131727, doi:10.1016/0004-6981(89)90056-5.

    • Search Google Scholar
    • Export Citation
  • Shilling, J. E., and Coauthors, 2013: Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign. Atmos. Chem. Phys., 13, 20912113.

    • Search Google Scholar
    • Export Citation
  • Spirig, C., A. Guenther, J. P. Greenberg, P. Calanca, and V. Tarveinen, 2004: Tethered balloon measurements of biogenic volatile organic compounds at a Boreal forest site. Atmos. Chem. Phys.,4, 215–229.

  • Thomas, C., and T. Foken, 2005: Detection of long-term coherent exchange over spruce forest. Theor. Appl. Climatol., 80, 91104.

  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178.

  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148.

    • Search Google Scholar
    • Export Citation
  • Vilà-Guerau de Arellano, J., N. Patton, T. Karl, K. van den Dries, M. C. Barth, and J. J. Orlando, 2011: The role of boundary layer dynamics on the diurnal evolution of isoprene and the hydroxyl radical over tropical forests. J. Geophys. Res., 116, D07304, doi:10.1029/2010JD014857.

    • Search Google Scholar
    • Export Citation
  • Vinuesa, J., and J. Vilà-Guerau de Arellano, 2003: Fluxes and (co-)variances of reacting scalars in the convective boundary layer. Tellus, 55B, 935949.

    • Search Google Scholar
    • Export Citation
  • Weil, J. C., and T. W. Horst, 1992: Footprint estimates for atmospheric flux measurements in the convective boundary layer. Precipitation Scavenging and Atmosphere-Surface Exchange, S. E. Schwartz and W. G. N. Slinn, Eds., Vol. 2, Hemisphere Publishing, 717–728.

  • Williams, J., and Coauthors, 2011: The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): An overview of meteorological and chemical influences. Atmos. Chem. Phys., 11, 10 59910 618.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 75 75 75
PDF Downloads 3 3 3

Airborne Flux Measurements of BVOCs above Californian Oak Forests: Experimental Investigation of Surface and Entrainment Fluxes, OH Densities, and Damköhler Numbers

View More View Less
  • 1 * Institute for Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria, and National Center for Atmospheric Research,** Boulder, Colorado
  • | 2 University of California, Berkeley, Berkeley, California
  • | 3 Center for Interdisciplinary Remotely-Piloted Aircraft Studies, Monterey, California
  • | 4 National Center for Atmospheric Research,** Boulder, Colorado
Restricted access

Abstract

Airborne flux measurements of isoprene were performed over the Californian oak belts surrounding the Central Valley. The authors demonstrate for the first time 1) the feasibility of airborne eddy covariance measurements of reactive biogenic volatile organic compounds; 2) the effect of chemistry on the vertical transport of reactive species, such as isoprene; and 3) the applicability of wavelet analysis to estimate regional fluxes of biogenic volatile organic compounds. These flux measurements demonstrate that instrumentation operating at slower response times (e.g., 1–5 s) can still be used to determine eddy covariance fluxes in the mixed layer above land, where typical length scales of 0.5–3 km were observed. Flux divergence of isoprene measured in the planetary boundary layer (PBL) is indicative of OH densities in the range of 4–7 × 106 molecules per cubic centimeter and allows extrapolation of airborne fluxes to the surface with Damköhler numbers (ratio between the mixing time scale and the chemical time scale) in the range of 0.3–0.9. Most of the isoprene is oxidized in the PBL with entrainment fluxes of about 10% compared to the corresponding surface fluxes. Entrainment velocities of 1–10 cm s−1 were measured. The authors present implications for parameterizing PBL schemes of reactive species in regional and global models.

Current affiliation: Institute for Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Thomas Karl, Institute for Meteorology and Geophysics, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria. E-mail: thomas.karl@uibk.ac.at

Abstract

Airborne flux measurements of isoprene were performed over the Californian oak belts surrounding the Central Valley. The authors demonstrate for the first time 1) the feasibility of airborne eddy covariance measurements of reactive biogenic volatile organic compounds; 2) the effect of chemistry on the vertical transport of reactive species, such as isoprene; and 3) the applicability of wavelet analysis to estimate regional fluxes of biogenic volatile organic compounds. These flux measurements demonstrate that instrumentation operating at slower response times (e.g., 1–5 s) can still be used to determine eddy covariance fluxes in the mixed layer above land, where typical length scales of 0.5–3 km were observed. Flux divergence of isoprene measured in the planetary boundary layer (PBL) is indicative of OH densities in the range of 4–7 × 106 molecules per cubic centimeter and allows extrapolation of airborne fluxes to the surface with Damköhler numbers (ratio between the mixing time scale and the chemical time scale) in the range of 0.3–0.9. Most of the isoprene is oxidized in the PBL with entrainment fluxes of about 10% compared to the corresponding surface fluxes. Entrainment velocities of 1–10 cm s−1 were measured. The authors present implications for parameterizing PBL schemes of reactive species in regional and global models.

Current affiliation: Institute for Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Thomas Karl, Institute for Meteorology and Geophysics, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria. E-mail: thomas.karl@uibk.ac.at
Save