• Benedict, J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354.

    • Search Google Scholar
    • Export Citation
  • Benedict, J., and D. A. Randall, 2009: Structure of the Madden–Julian oscillation in the superparameterized CAM. J. Atmos. Sci., 66, 32773296.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillation in a simple nonlinear model. J. Atmos. Sci., 50, 29222939.

  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., L. Hartten, and R. H. Johnson, 1997: Impacts of merging profiler and rawinsonde winds on TOGA COARE analyses. J. Atmos. Oceanic Technol., 14, 12641279.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, P. T. Haertel, and J. Wang, 2003: Corrected TOGA COARE sounding humidity data: Impact on diagnosed properties of convection and climate over the warm pool. J. Climate, 16, 23702384.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Coauthors, 2010: Quality controlled upper-air sounding dataset for TiMREX/SoWMEX: Development and corrections. J. Atmos. Oceanic Technol., 27, 18021821.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and M. J. McPhaden, 1997: The upper ocean heat balance in the western equatorial Pacific warm pool during September–December 1992. J. Geophys. Res., 102, 85338553.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO and GISS GCM simulations. J. Climate, 25, 37553770.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implication for intraseasonal oscillations. J. Atmos. Sci., 54, 23732386.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Godfrey, J. S., R. A. Houze Jr., R. H. Johnson, R. Lukas, J.-L. Redelsperger, A. Sui, and R. Weller, 1998: Coupled Ocean-Atmosphere Response Experiment: An interim report. J. Geophys. Res., 103 (C7), 14 39514 450.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., W. H. Schubert, D. E. Stevens, and H.-C. Kuo, 1989: Response of the Hadley Circulation to convective forcing in the ITCZ. J. Atmos. Sci., 46, 29572973.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., and R. H. Johnson, 1998: Two-day disturbances in the equatorial western Pacific. Quart. J. Roy. Meteor. Soc., 124, 615636.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., G. N. Kiladis, A. Denno, and T. M. Rickenbach, 2008: Vertical-mode decompositions of 2-day waves and the Madden–Julian oscillation. J. Atmos. Sci., 65, 813833.

    • Search Google Scholar
    • Export Citation
  • Hermes, J. C., and C. J. C. Reason, 2008: Annual cycle of the South Indian Ocean (Seychelles-Chagos) thermocline ridge in a regional ocean model. J. Geophys. Res., 113, C04035, doi:10.1029/2007JC004363.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and B. Stevens, 2013: Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70, 448464.

  • Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motion in the tropics. J. Meteor. Soc. Japan, 60, 396410.

  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and D. A. Randall, 1994: Low-frequency oscillations in radiative-convective systems. J. Atmos. Sci., 51, 10891099.

  • Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, E. F. Stocker, and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3355.

    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., J.-L. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev., 112, 15901601.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and X. Lin, 1997: Episodic trade wind regimes over the western Pacific warm pool. J. Atmos. Sci., 54, 20202034.

  • Johnson, R. H., and P. E. Ciesielski, 2002: Characteristics of the 1998 summer monsoon onset over the northern South China Sea. J. Meteor. Soc. Japan, 80, 561578.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate,12, 2397–2418.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Katsumata, M., P. E. Ciesielski, and R. H. Johnson, 2011: Evaluation of budget analysis during MISMO. J. Appl. Meteor. Climatol., 50, 241254.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793.

  • Kikuchi, K., and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, G. C. Reid, and K. S. Gage, 2001: Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere. Quart. J. Roy. Meteor. Soc., 127, 19611984.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., C. D. Hoyos, P. J. Webster, and I. S. Kang, 2009: Ocean–atmosphere coupling and the boreal winter MJO. Climate Dyn., 35, 771–784, doi:10.1007/s00382-009-0612-x.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., and D. E. Waliser, 2005: Intraseasonal Variability of the Atmosphere-Ocean Climate System. Springer, 474 pp.

  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., B. E. Mapes, M. Zhang, and N. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61, 296309.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53, 695715.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96, 33433357.

  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, 18071828.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesocale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian Oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453.

  • Meyers, G., P. McIntosh, L. Pigot, and M. Pook, 2007: The years of El Nińo, La Nińa, and interactions with the tropical Indian Ocean. J. Climate, 20, 28722880.

    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2004: Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496.

    • Search Google Scholar
    • Export Citation
  • Riley, E. M., B. E. Mapes, and S. N. Tulich, 2011: Clouds associated with the Madden–Julian oscillation: A new perspective from CloudSat. J. Atmos. Sci., 68, 30323051.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2012a: Observed structure of convectively coupled waves as a function of equivalent depth: Kelvin waves and the Madden–Julian oscillation. J. Atmos. Sci., 69, 20972106.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2012b: The spectrum of convectively coupled Kelvin waves and the Madden–Julian oscillation in regions of low-level easterly and westerly background flow. J. Atmos. Sci., 69, 21072111.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and L. M. Gribble-Verhagen, 2010: Variations in the flow of the global atmosphere associated with a composite convectively coupled oceanic Kelvin wave. J. Climate, 23, 41924201.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., C. J. Schreck III, and M. A. Janiga, 2009: Contributions of convectively coupled equatorial Rossby waves and Kelvin waves to the real-time multivariate MJO indices. Mon. Wea. Rev., 137, 469478.

    • Search Google Scholar
    • Export Citation
  • Sakurai, N., and Coauthors, 2005: Diurnal cycle of cloud system migration over Sumatera Island. J. Meteor. Soc. Japan, 83, 835850.

  • Schubert, W. H., P. E. Ciesielski, D. E. Stevens, and H.-C. Kuo, 1991: Potential vorticity modeling of the ITCZ and the Hadley Circulation. J. Atmos. Sci., 48, 14931509.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61, 13411358.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and H. H. Hendon, 1998: Mixed layer modeling of intraseasonal variability in the tropical western Pacific and Indian Oceans. J. Climate, 11, 26682685.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319.

  • Stephens, G. L., P. J. Webster, R. H. Johnson, R. Engelen, and T. S. L'Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and the tropical sea surface temperatures. J. Climate, 17, 22132224.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151.

  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., K.-M. Lau, and C.-H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124, 18921913.

  • Tam, C.-Y., and N.-C. Lau, 2005: Modulation of the Madden-Julian Oscillation by ENSO: Inference from observations and GCM simulations. J. Meteor. Soc. Japan, 83, 727743.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., and Coauthors, 2009: CIRENE: Air–sea interactions in the Seychelles–Chagos thermocline ridge region. Bull. Amer. Meteor. Soc., 90, 4561.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and J. M. Wallace, 2010: Annual, interannual, and intraseasonal variability of tropical tropopause transition layer cirrus. J. Atmos. Sci., 67, 31133129.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, Q. Fu, and T. P. Ackerman, 2010: Tropical tropopause transition layer cirrus as represented by CALIPSO lidar observations. J. Atmos. Sci., 67, 3113–3129.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and B. Khouider, 2010: The deepening of tropical convection by congestus preconditioning. J. Atmos. Sci., 67, 26012615.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., 2006: Intraseasonal variability. The Asian Monsoon, B. Wang, Ed., Springer, 203–257.

  • Wang, B., 2005: Theory. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Springer, 19–61.

  • Wang, J., and L. Zhang, 2008: Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. J. Climate, 21, 22182238.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine, 2002: Corrections of the humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19, 9811002.

    • Search Google Scholar
    • Export Citation
  • Wang, J., L. Zhang, A. Dai, F. Immler, and H. Vömel, 2013: Radiation dry bias correction of Vaisala RS92 humidity data and its impact on historical radiosonde data. J. Atmos. Oceanic Technol., 30, 197–214.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., C. A. Clayson, and J. A. Curry, 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. J. Climate, 9, 17121730.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. Moore, J. Loschnigg, and M. Leban, 1999: Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98. Nature, 401, 356360.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and S. P. Anderson, 1996: Surface meteorology and air-sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean-Atmosphere Response Experiment. J. Climate, 9, 19591990.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and K. M. Weickmann, 2001: Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability. Mon. Wea. Rev., 129, 26772694.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208.

  • Yamada, H., K. Yoneyama, M. Katsumata, and R. Shirooka, 2010: Observations of a super cloud cluster accompanied by synoptic-scale eastward-propagating precipitating systems over the Indian Ocean. J. Atmos. Sci., 67, 14561473.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., and Coauthors, 2008: MISMO field experiment in the equatorial Indian Ocean. Bull. Amer. Meteor. Soc., 89, 18891903.

  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., in press.

  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., and R. A. Houze Jr., 2013: Deep convective systems observed by A-Train in the tropical Indo-Pacific region affected by the MJO. J. Atmos. Sci., 70, 465486.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., J. Gottschalck, E. D. Maloney, M. W. Moncrieff, F. Vitart, D. E. Waliser, B. Wang, and M. C. Wheeler, 2013: Cracking the MJO nut. Geophys. Res. Lett., 40, 12231230, doi:10.1002/grl.50244.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 11
PDF Downloads 11 11 11

Structure and Properties of Madden–Julian Oscillations Deduced from DYNAMO Sounding Arrays

View More View Less
  • 1 Colorado State University, Fort Collins, Colorado
Restricted access

Abstract

The kinematic and thermodynamic characteristics of the October and November 2011 Madden–Julian oscillations (MJOs) that occurred over the Indian Ocean during Dynamics of the MJO (DYNAMO) are investigated. Analyses are presented 1) for two primary sounding arrays, where results are independent of model parameterizations, and 2) on larger scales, including the Indian Ocean, using operational and reanalysis data.

Mean precipitation during DYNAMO was characterized by maxima in two east–west bands north and south of the equator. This pattern alternated between two bands during the inactive phase of the MJOs and a single rainfall maximum on the equator during the active phases. Precipitation over the northern sounding array (NSA), where the MJO signal was strongest, was significantly modulated by the MJOs, while the southern array experienced more frequent, briefer episodes of rainfall mostly related to ITCZ convection. Over the NSA the MJOs were characterized by gradual moistening of the low to midtroposphere over approximately 2-week periods. The October MJO featured multiple westward-moving, 2-day disturbances whereas the November MJO principally comprised two prominent Kelvin waves. Patterns of moistening, divergence, and vertical motion suggest a stepwise progression of convection, from shallow cumulus to congestus to deep convection. Tilted thermal anomalies in the upper troposphere–lower stratosphere reveal gravity or Kelvin waves excited by the MJO convective envelopes, which modulate the tropopause and contribute to preactive-phase upper-tropospheric moistening. While there is a number of similarities in the characteristics of the two MJOs, there are sufficient differences to warrant caution in generalizing results from these two events.

Corresponding author address: Richard H. Johnson, Department of Atmospheric Science, 1371 Campus Delivery, Colorado State University, Fort Collins, CO 80523. E-mail: johnson@atmos.colostate.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP special collection.

Abstract

The kinematic and thermodynamic characteristics of the October and November 2011 Madden–Julian oscillations (MJOs) that occurred over the Indian Ocean during Dynamics of the MJO (DYNAMO) are investigated. Analyses are presented 1) for two primary sounding arrays, where results are independent of model parameterizations, and 2) on larger scales, including the Indian Ocean, using operational and reanalysis data.

Mean precipitation during DYNAMO was characterized by maxima in two east–west bands north and south of the equator. This pattern alternated between two bands during the inactive phase of the MJOs and a single rainfall maximum on the equator during the active phases. Precipitation over the northern sounding array (NSA), where the MJO signal was strongest, was significantly modulated by the MJOs, while the southern array experienced more frequent, briefer episodes of rainfall mostly related to ITCZ convection. Over the NSA the MJOs were characterized by gradual moistening of the low to midtroposphere over approximately 2-week periods. The October MJO featured multiple westward-moving, 2-day disturbances whereas the November MJO principally comprised two prominent Kelvin waves. Patterns of moistening, divergence, and vertical motion suggest a stepwise progression of convection, from shallow cumulus to congestus to deep convection. Tilted thermal anomalies in the upper troposphere–lower stratosphere reveal gravity or Kelvin waves excited by the MJO convective envelopes, which modulate the tropopause and contribute to preactive-phase upper-tropospheric moistening. While there is a number of similarities in the characteristics of the two MJOs, there are sufficient differences to warrant caution in generalizing results from these two events.

Corresponding author address: Richard H. Johnson, Department of Atmospheric Science, 1371 Campus Delivery, Colorado State University, Fort Collins, CO 80523. E-mail: johnson@atmos.colostate.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP special collection.

Save