Local Dynamics of Baroclinic Waves in the Martian Atmosphere

Michael J. Kavulich Jr. Texas A&M University, College Station, Texas

Search for other papers by Michael J. Kavulich Jr. in
Current site
Google Scholar
PubMed
Close
,
Istvan Szunyogh Texas A&M University, College Station, Texas

Search for other papers by Istvan Szunyogh in
Current site
Google Scholar
PubMed
Close
,
Gyorgyi Gyarmati Texas A&M University, College Station, Texas

Search for other papers by Gyorgyi Gyarmati in
Current site
Google Scholar
PubMed
Close
, and
R. John Wilson Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by R. John Wilson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The paper investigates the processes that drive the spatiotemporal evolution of baroclinic transient waves in the Martian atmosphere by a simulation experiment with the Geophysical Fluid Dynamics Laboratory (GFDL) Mars general circulation model (GCM). The main diagnostic tool of the study is the (local) eddy kinetic energy equation. Results are shown for a prewinter season of the Northern Hemisphere, in which a deep baroclinic wave of zonal wavenumber 2 circles the planet at an eastward phase speed of about 70° Sol−1 (Sol is a Martian day). The regular structure of the wave gives the impression that the classical models of baroclinic instability, which describe the underlying process by a temporally unstable global wave (e.g., Eady model and Charney model), may have a direct relevance for the description of the Martian baroclinic waves. The results of the diagnostic calculations show, however, that while the Martian waves remain zonally global features at all times, there are large spatiotemporal changes in their amplitude. The most intense episodes of baroclinic energy conversion, which take place in the two great plain regions (Acidalia Planitia and Utopia Planitia), are strongly localized in both space and time. In addition, similar to the situation for terrestrial baroclinic waves, geopotential flux convergence plays an important role in the dynamics of the downstream-propagating unstable waves.

Corresponding author address: Istvan Szunyogh, Department of Atmospheric Sciences, Texas A&M University, MS 3150, College Station, TX 77843. E-mail: szunyogh@tamu.edu

Abstract

The paper investigates the processes that drive the spatiotemporal evolution of baroclinic transient waves in the Martian atmosphere by a simulation experiment with the Geophysical Fluid Dynamics Laboratory (GFDL) Mars general circulation model (GCM). The main diagnostic tool of the study is the (local) eddy kinetic energy equation. Results are shown for a prewinter season of the Northern Hemisphere, in which a deep baroclinic wave of zonal wavenumber 2 circles the planet at an eastward phase speed of about 70° Sol−1 (Sol is a Martian day). The regular structure of the wave gives the impression that the classical models of baroclinic instability, which describe the underlying process by a temporally unstable global wave (e.g., Eady model and Charney model), may have a direct relevance for the description of the Martian baroclinic waves. The results of the diagnostic calculations show, however, that while the Martian waves remain zonally global features at all times, there are large spatiotemporal changes in their amplitude. The most intense episodes of baroclinic energy conversion, which take place in the two great plain regions (Acidalia Planitia and Utopia Planitia), are strongly localized in both space and time. In addition, similar to the situation for terrestrial baroclinic waves, geopotential flux convergence plays an important role in the dynamics of the downstream-propagating unstable waves.

Corresponding author address: Istvan Szunyogh, Department of Atmospheric Sciences, Texas A&M University, MS 3150, College Station, TX 77843. E-mail: szunyogh@tamu.edu
Save
  • Angelats i Coll, M., F. Forget, M. A. López-Valverde, and F. González-Galindo, 2005: The first Mars thermostatic general circulation model: The Martian atmosphere from the ground to 240 km. Geophys. Res. Lett.,32, L04201, doi:10.1029/2004GL021368.

  • Banfield, D., B. J. Conratha, M. D. Smith, P. R. Christensen, and R. J. Wilson, 2003: Forced waves in the Martian atmosphere from MGS TES nadir data. Icarus, 161, 319345.

    • Search Google Scholar
    • Export Citation
  • Banfield, D., B. J. Conratha, P. J. Gierasch, R. J. Wilson, and M. D. Smith, 2004: Traveling waves in the Martian atmosphere from MGS TES nadir data. Icarus, 170, 365403.

    • Search Google Scholar
    • Export Citation
  • Barnes, J. R., 1980: Time spectral analysis of midlatitude disturbances in the Martian atmosphere. J. Atmos. Sci., 37, 20022015.

  • Barnes, J. R., 1981: Midlatitude disturbances in the Martian atmosphere: A second Mars year. J. Atmos. Sci., 38, 225234.

  • Barnes, J. R., J. B. Pollack, R. M. Haberle, C. B. Leovy, R. W. Zurek, H. Lee, and J. Schaeffer, 1993: Mars atmospheric dynamics simulated by the NASA Ames general circulation model: 2. Transient baroclinic eddies. J. Geophys. Res., 98 (E2), 31253148.

    • Search Google Scholar
    • Export Citation
  • Basu, S., M. I. Richardson, and R. J. Wilson, 2004: Simulation of the Martian dust cycle with the GFDL Mars GCM. J. Geophys. Res., 109, E11006, doi:10.1029/2004JE002243.

    • Search Google Scholar
    • Export Citation
  • Basu, S., J. Wilson, M. Richardson, and A. Ingersoll, 2006: Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM. J. Geophys. Res., 111, E09004, doi:10.1029/2005JE002660.

    • Search Google Scholar
    • Export Citation
  • Brayshow, D. J., B. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 25392558.

    • Search Google Scholar
    • Export Citation
  • Brayshow, D. J., B. Hoskins, and M. Blackburn, 2011: The basic ingredients of the North Atlantic storm track. Part II: Sea surface temperature. J. Atmos. Sci., 68, 17841805.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 20382053.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2005: The impact of wave packets propagating across Asia on Pacific cyclone development. Mon. Wea. Rev., 133, 19982015.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2009: Diabatic and orographic forcing of northern winter stationary waves and storm tracks. J. Climate, 22, 670688.

  • Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 9991015.

  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162.

  • Christensen, P. R., and Coauthors, 2001: The Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation, description and surface science results. J. Geophys. Res., 106 (E10), 23 82323 871.

    • Search Google Scholar
    • Export Citation
  • Collins, M., S. R. Lewis, P. L. Read, and F. Hourdin, 1996: Baroclinic wave transitions in the Martian atmosphere. Icarus, 120, 344357.

    • Search Google Scholar
    • Export Citation
  • Conrath, B. J., J. C. Pearl, M. D. Smith, W. C. Maguire, P. R. Christensen, S. Dason, and M. S. Kaelberer, 2000: Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: Atmospheric temperatures during aerobreaking and science phasing. J. Geophys. Res., 105 (E4), 95099520.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872299.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL coupled model CM3. J. Climate, 24, 34843519.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352.

  • Eyre, J. R., 1992: A bias correction scheme for simulated TOVS brightness temperatures. ECMWF Tech. Memo. 186, 28 pp.

  • Farrell, B. F., 1982: The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci., 39, 16631686.

  • Forget, F., F. Hourdin, R. Fournier, C. Hourdin, and O. Talagrand, 1999: Improved general circulation models of the Martian atmosphere from the surface to 80 km. J. Geophys. Res., 104 (E10), 24 15524 176.

    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., 2011: Mars weather and predictability: Modeling and ensemble data assimilation of spacecraft observations. Ph.D. thesis, University of Maryland, College Park, 161 pp.

  • Greybush, S. J., R. J. Wilson, R. N. Hoffman, M. J. Hoffman, T. Miyoshi, K. Ide, T. McConnochie, and E. Kalnay, 2012: Ensemble Kalman filter data assimilation of Thermal Emission Spectrometer temperature retrievals into a Mars GCM. J. Geophys. Res.,117, E11008, doi:10.1029/2012JE004097.

  • Greybush, S. J., E. Kalnay, M. J. Hoffman, and R. J. Wilson, 2013: Identifying Martian atmospheric instabilities and their physical origins using bred vectors. Quart. J. Roy. Meteor. Soc., 139, 639653.

    • Search Google Scholar
    • Export Citation
  • Haberle, R. M., 2002: Planetary atmospheres: Mars. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. A. Curry, and J. A. Pyle, Eds., Elsevier Science Ltd., 1745–1755.

  • Hinson, D. P., and R. J. Wilson, 2002: Transient eddies in the southern hemisphere of Mars. Geophys. Res. Lett., 29, doi:10.1029/2001GL014103.

    • Search Google Scholar
    • Export Citation
  • Hinson, D. P., and R. J. Wilson, 2004: Temperature inversions, thermal tides, and water ice clouds in the Martian tropics. J. Geophys. Res.,109, E01002, doi:10.1029/2003JE002129.

  • Hinson, D. P., and H. Wang, 2010: Further observations of regional dust storms and baroclinic eddies in the northern hemisphere of Mars. Icarus, 206, 290305.

    • Search Google Scholar
    • Export Citation
  • Hinson, D. P., R. J. Wilson, M. D. Smith, and B. J. Conrath, 2003: Stationary planetary waves in the atmosphere of Mars during southern winter. J. Geophys. Res., 108, 5004, doi:10.1029/2002JE001949.

    • Search Google Scholar
    • Export Citation
  • Hollingsworth, J. L., R. M. Haberle, J. R. Barnes, A. F. C. Bridger, J. B. Pollack, H. Lee, and J. Schaeffer, 1996: Orographic control of storm zones on Mars. Nature, 380, 413416.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47, 18541864.

  • IEEE, 1979: Programs for Digital Signal Processing. IEEE Press, 600 pp.

  • James, I. N., 1994: Introduction to Circulating Atmospheres. Cambridge University Press, 422 pp.

  • James, P. B., H. H. Kieffer, and D. A. Paige, 1992: The seasonal cycle of carbon dioxide on Mars. Mars, H. H. Kieffer et al., Eds., The University of Arizona Press, 934–968.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kleinböhl, A., and Coauthors, 2009: Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J. Geophys. Res., 114, E10006, doi:10.1029/2009JE003358.

    • Search Google Scholar
    • Export Citation
  • Kuroda, T. N., A. S. Medvedev, P. Hartogh, and M. Takashi, 2007: Seasonal changes of the baroclinic wave activity in the northern hemisphere of Mars simulated with a GCM. Geophys. Res. Lett.,34, L09203, doi:10.1029/2006GL028816.

  • Lee, C., G. Lawson, M. I. Richardson, J. L. Anderson, N. Collins, T. Hoar, and M. A. Mischna, 2011: Demonstration of ensemble data assimilation for Mars using DART, MarsWRF, and radiance observations from MGS TES. J. Geophys. Res.,116, E11011, doi:10.1029/2011JE003815.

  • Leovy, C., 2001: Weather and climate on Mars. Nature, 412, 245249.

  • Lewis, S. R., P. L. Read, B. J. Conrath, J. C. Pearl, and M. D. Smith, 2007: Assimilation of Thermal Emission Spectrometer atmospheric data during the Mars Global Surveyor aerobreaking period. Icarus, 192, 327347.

    • Search Google Scholar
    • Export Citation
  • Lim, G. H., and J. M. Wallace, 1991: Structure and evolution of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 48, 17181732.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Lorenz, R. D., 2008: Atmospheric electricity hazards. Space Sci. Rev., 137, 287294.

  • Montabone, L., S. R. Lewis, P. L. Read, and D. P. Hinson, 2006: Validation of Martian meteorological data assimilation for MGS/TES using radio occultation measurements. Icarus, 185, 113132.

    • Search Google Scholar
    • Export Citation
  • Montabone, L., S. R. Lewis, and P. L. Read, 2011a: Mars Analysis Correction Data Assimilation (MACDA): MGS/TES v1.0. NCAS British Atmospheric Data Centre, doi: 10.5285/78114093-E2BD-4601-8AE5-3551E62AEF2B.

  • Montabone, L., M. T. Lemmon, M. D. Smith, M. J. Wolff, F. Forget, and E. Millour, 2011b: Reconciling dust opacity datasets and building multiannual dust scenarios for Mars atmospheric models. Fourth Int. Workshop on the Mars Atmosphere: Modelling and Observations, Paris, France, CNES and ESA, 3 pp. [Available online at http://www-mars.lmd.jussieu.fr/paris2011/abstracts/montabone2_paris2011.pdf.]

  • Nayvelt, L., P. J. Gierasch, and K. H. Cook, 1997: Modeling and observations of Martian stationary waves. J. Atmos. Sci., 54, 9861013.

    • Search Google Scholar
    • Export Citation
  • Newman, C. E., S. R. Lewis, and P. L. Read, 2004: Investigating atmospheric predictability on Mars using breeding vectors in a general-circulation model. Quart. J. Roy. Meteor. Soc., 130, 29712989.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48, 19721998.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. P. Sheldon, 1995: Stages in the energetics of baroclinic systems. Tellus, 47, 605628.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 719 pp.

  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578.

  • Read, P. L., and S. R. Lewis, 2004: The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet. Springer-Verlag, 326 pp.

  • Richardson, M. I., and R. J. Wilson, 2002a: A topographically forced asymmetry in the Martian circulation and climate. Nature, 416, 298300.

    • Search Google Scholar
    • Export Citation
  • Richardson, M. I., and R. J. Wilson, 2002b: Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model. J. Geophys. Res., 107 (E5), doi:10.1029/2001JE001536.

    • Search Google Scholar
    • Export Citation
  • Richardson, M. I., R. J. Wilson, and A. V. Rodin, 2002: Water ice clouds in the Martian atmosphere: General circulation model experiments with a simple cloud scheme. J. Geophys. Res., 107, 5064, doi:10.1029/2001JE001804.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 238 pp.

  • Rogberg, P., P. L. Read, S. R. Lewis, and L. Montabone, 2010: Assessing atmospheric predictability on Mars using numerical weather prediction and data assimilation. Quart. J. Roy. Meteor. Soc., 136, 16141635.

    • Search Google Scholar
    • Export Citation
  • Seibert, M., J. Herman, and D. ElDeeb, 2009: Operations strategies for the Mars exploration rovers during the 2007 Martian global dust storm. Proc. 2009 IEEE Aerospace Conf., Big Sky, MT, IEEE, doi:10.1109/AERO.2009.4839697.

  • Sharma, R., C. A. Wyatt, J. Zhang, C. I. Calle, N. Mardesich, and M. K. Mazumder, 2009: Experimental evaluation and analysis of electrodynamic screen as dust mitigation technology for future Mars missions. IEEE Trans. Ind. Appl., 45, 591596.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432.

  • Smith, M. D., and Coauthors, 2004: First atmospheric science results from the Mars exploration rovers Mini-TES. Science, 306, 17501753.

    • Search Google Scholar
    • Export Citation
  • Swanson, K., and R. T. Pierrehumbert, 1994: Nonlinear wave packet evolution on a baroclinically unstable jet. J. Atmos. Sci., 51, 384396.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wallace, J. M., G.-H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks, and baroclinic waveguides. J. Atmos. Sci., 45, 439462.

    • Search Google Scholar
    • Export Citation
  • Wang, H., M. I. Richardson, R. J. Wilson, A. P. Ingersoll, A. D. Toigo, and R. W. Zurek, 2003: Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars. Geophys. Res. Lett., 30, 1488, doi:10.1029/2002GL016828.

    • Search Google Scholar
    • Export Citation
  • Wang, H., R. W. Zurek, and M. I. Richardson, 2005: Relationship between frontal dust storms and transient eddy activity in the northern hemisphere of Mars as observed by Mars Global Surveyor. J. Geophys. Res., 110, E07005, doi:10.1029/2005JE002423.

    • Search Google Scholar
    • Export Citation
  • Wilson, R. J., 2000: Evidence for diurnal period Kelvin waves in the Martian atmosphere from Mars Global Surveyor TES data. Geophys. Res. Lett., 27, 38893892.

    • Search Google Scholar
    • Export Citation
  • Wilson, R. J., 2011: Dust cycle modeling with the GFDL Mars general circulation model. Fourth Int. Workshop on the Mars Atmosphere: Modelling and Observations, Paris, France, CNES and ESA, 4 pp. [Available online at http://www-mars.lmd.jussieu.fr/paris2011/abstracts/wilson_rj3_paris2011.pdf.]

  • Wilson, R. J., and K. Hamilton, 1996: Comprehensive model simulation of thermal tides in the Martian atmosphere. J. Atmos. Sci., 53, 12901326.

    • Search Google Scholar
    • Export Citation
  • Wilson, R. J., D. Banfield, B. J. Conrath, and M. D. Smith, 2002: Traveling waves in the northern hemisphere of Mars. Geophys. Res. Lett., 29, 16841688.

    • Search Google Scholar
    • Export Citation
  • Wilson, R. J., D. Hinson, and M. D. Smith, 2006: GCM simulations of transient eddies and frontal systems in the Martian atmosphere. Second Workshop on Mars Atmosphere Modelling and Observations, Granada, Spain, CNES and ESA, 5 pp. [Available online at http://www-mars.lmd.jussieu.fr/granada2006/abstracts/Wilson3_Granada2006.pdf.]

  • Wilson, R. J., G. A. Neumann, and M. D. Smith, 2007: Diurnal variation and radiative influence of Martian water ice clouds. Geophys. Res. Lett.,34, L02710, doi:10.1029/2006GL027976.

  • Wilson, R. J., S. R. Lewis, L. Montabone, and M. D. Smith, 2008: Influence of water ice clouds on Martian tropical atmospheric temperature. Geophys. Res. Lett.,35, L07202, doi:10.1029/2007GL032405.

  • Zimin, A. V., I. Szunyogh, D. J. Patil, B. R. Hunt, and E. Ott, 2003: Extracting envelopes of Rossby wave packets. Mon. Wea. Rev., 131, 10111017.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 896 236 63
PDF Downloads 268 59 3