Maintenance of the Stratospheric Structure in an Idealized General Circulation Model

M. Jucker Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by M. Jucker in
Current site
Google Scholar
PubMed
Close
,
S. Fueglistaler Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by S. Fueglistaler in
Current site
Google Scholar
PubMed
Close
, and
G. K. Vallis Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by G. K. Vallis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work explores the maintenance of the stratospheric structure in a primitive equation model that is forced by a Newtonian cooling with a prescribed radiative equilibrium temperature field. Models such as this are well suited to analyze and address questions regarding the nature of wave propagation and troposphere–stratosphere interactions. The focus lies on the lower to midstratosphere and the mean annual cycle, with its large interhemispheric variations in the radiative background state and forcing, is taken as a benchmark to be simulated with reasonable verisimilitude. A reasonably realistic basic stratospheric temperature structure is a necessary first step in understanding stratospheric dynamics.

It is first shown that using a realistic radiative background temperature field based on radiative transfer calculations substantially improves the basic structure of the model stratosphere compared to previously used setups. Then, the physical processes that are needed to maintain the seasonal cycle of temperature in the lower stratosphere are explored. It is found that an improved stratosphere and seasonally varying topographically forced stationary waves are, in themselves, insufficient to produce a seasonal cycle of sufficient amplitude in the tropics, even if the topographic forcing is large. Upwelling associated with baroclinic wave activity is an important influence on the tropical lower stratosphere and the seasonal variation of tropospheric baroclinic activity contributes significantly to the seasonal cycle of the lower tropical stratosphere. Given a reasonably realistic basic stratospheric structure and a seasonal cycle in both stationary wave activity and tropospheric baroclinic instability, it is possible to obtain a seasonal cycle in the lower stratosphere of amplitude comparable to the observations.

Corresponding author address: M. Jucker, Program in Atmospheric and Oceanic Sciences, Princeton University, 300 Forrestal Road, Sayre Hall, Princeton, NJ 08544. E-mail: mjucker@princeton.edu

Abstract

This work explores the maintenance of the stratospheric structure in a primitive equation model that is forced by a Newtonian cooling with a prescribed radiative equilibrium temperature field. Models such as this are well suited to analyze and address questions regarding the nature of wave propagation and troposphere–stratosphere interactions. The focus lies on the lower to midstratosphere and the mean annual cycle, with its large interhemispheric variations in the radiative background state and forcing, is taken as a benchmark to be simulated with reasonable verisimilitude. A reasonably realistic basic stratospheric temperature structure is a necessary first step in understanding stratospheric dynamics.

It is first shown that using a realistic radiative background temperature field based on radiative transfer calculations substantially improves the basic structure of the model stratosphere compared to previously used setups. Then, the physical processes that are needed to maintain the seasonal cycle of temperature in the lower stratosphere are explored. It is found that an improved stratosphere and seasonally varying topographically forced stationary waves are, in themselves, insufficient to produce a seasonal cycle of sufficient amplitude in the tropics, even if the topographic forcing is large. Upwelling associated with baroclinic wave activity is an important influence on the tropical lower stratosphere and the seasonal variation of tropospheric baroclinic activity contributes significantly to the seasonal cycle of the lower tropical stratosphere. Given a reasonably realistic basic stratospheric structure and a seasonal cycle in both stationary wave activity and tropospheric baroclinic instability, it is possible to obtain a seasonal cycle in the lower stratosphere of amplitude comparable to the observations.

Corresponding author address: M. Jucker, Program in Atmospheric and Oceanic Sciences, Princeton University, 300 Forrestal Road, Sayre Hall, Princeton, NJ 08544. E-mail: mjucker@princeton.edu
Save
  • Birner, T., and H. Bönisch, 2011: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys., 11, 817827.

    • Search Google Scholar
    • Export Citation
  • Boehm, M. T., and S. Lee, 2003: The implications of tropical Rossby waves for tropical tropopause cirrus formation and for the equatorial upwelling of the Brewer–Dobson circulation. J. Atmos. Sci., 60, 247261.

    • Search Google Scholar
    • Export Citation
  • Chan, C. J., and R. A. Plumb, 2009: The response to stratospheric forcing and its dependence on the state of the troposphere. J. Atmos. Sci., 66, 21072115.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and L. Sun, 2011: Mechanisms of the tropical upwelling branch of the Brewer–Dobson circulation: The role of extratropical waves. J. Atmos. Sci., 68, 28782892.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., 1982: A parametrization of scale-dependent radiative damping rates in the middle atmosphere. J. Atmos. Sci., 39, 11411152.

    • Search Google Scholar
    • Export Citation
  • Fortuin, J. P. F., and U. Langematz, 1994: An update on the global ozone climatology and on concurrent ozone and temperature trends. Atmospheric Sensing and Modelling, R. P. Santer, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 2311), 207–216.

  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009:Tropical tropopause layer. Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., P. H. Haynes, and P. M. Forster, 2011:The annual cycle in lower stratospheric temperatures revisited. Atmos. Chem. Phys., 11, 37013711, doi:10.5194/acp-11-3701-2011.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., 2012: Stratospheric versus tropospheric control of the strength and structure of the Brewer–Dobson circulation. J. Atmos. Sci., 69, 28572877.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and L. Polvani, 2009: Stratosphere–troposphere coupling in a relatively simple AGCM: The importance of stratospheric variability. J. Climate, 22, 19201933.

    • Search Google Scholar
    • Export Citation
  • Ghazi, A., P.-H. Wang, and M. P. McCormick, 1985: A study on radiative damping of planetary waves utilizing stratospheric observations. J. Atmos. Sci., 42, 20322042.

    • Search Google Scholar
    • Export Citation
  • Haqq-Misra, J., S. Lee, and D. M. W. Frierson, 2011: Tropopause structure and the role of eddies. J. Atmos. Sci., 68, 29302944.

  • Hartmann, D. D. L., 1981: Some aspects of the coupling between radiation, chemistry, and dynamics in the stratosphere. J. Geophys. Res., 86 (C10), 96319640.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the downward control of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678.

    • Search Google Scholar
    • Export Citation
  • Held, I. I. M., and M. M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830.

    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., T. G. Shepherd, and S. Yoden, 2010: On the approximation of local and linear radiative damping in the middle atmosphere. J. Atmos. Sci., 67, 20702085.

    • Search Google Scholar
    • Export Citation
  • Holton, J. J. R., P. H. P. Haynes, M. E. M. McIntyre, A. Douglas, R. B. R. Rood, L. L. Pfister, and A. R. Douglass, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403440, doi:10.1029/95RG02097.

    • Search Google Scholar
    • Export Citation
  • Kerr-Munslow, A. M., and W. A. Norton, 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part I: ECMWF analyses. J. Atmos. Sci., 63, 14101419.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and S. Solomon, 1986: On the radiative balance of the stratosphere. J. Atmos. Sci., 43, 15251534.

  • Manabe, S., and J. D. Mahlman, 1976: Simulation of seasonal and interhemispheric variations in the stratospheric circulation. J. Atmos. Sci., 33, 21852217.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., and Coauthors, 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101 (D2), 39894006.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., and J. E. Rosenfield, 1997: Stratospheric thermal damping times. Geophys. Res. Lett., 24, 433436, doi:10.1029/96GL03720.

    • Search Google Scholar
    • Export Citation
  • Norton, W. A., 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part II: Model results. J. Atmos. Sci., 63, 14201431.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 793809.

  • Plumb, R. A., 2007: Tracer interrelationships in the stratosphere. Rev. Geophys., 45, RG4005, doi:10.1029/2005RG000179.

  • Plumb, R. A., and J. Eluszkiewicz, 1999: The Brewer–Dobson circulation: Dynamics of the tropical upwelling. J. Atmos. Sci., 56, 868890.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29, 4043, doi:10.1029/2001GL014284.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, and F. Wu, 2002: Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J. Atmos. Sci., 59, 21412152.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., 1995: Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100 (D3), 51735191.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., 2002: Wave-driven mean tropical upwelling in the lower stratosphere. J. Atmos. Sci., 59, 27452759.

  • Semeniuk, K., and T. G. Shepherd, 2001: Mechanisms for tropical upwelling in the stratosphere. J. Atmos. Sci., 58, 30973115.

  • Yulaeva, E., J. R. Holton, and J. M. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci., 51, 169174.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 307 83 5
PDF Downloads 185 37 2