Understanding Convective Extreme Precipitation Scaling Using Observations and an Entraining Plume Model

Jessica M. Loriaux Delft University of Technology, Delft, and Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Jessica M. Loriaux in
Current site
Google Scholar
PubMed
Close
,
Geert Lenderink Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Geert Lenderink in
Current site
Google Scholar
PubMed
Close
,
Stephan R. De Roode Delft University of Technology, Delft, Netherlands

Search for other papers by Stephan R. De Roode in
Current site
Google Scholar
PubMed
Close
, and
A. Pier Siebesma Delft University of Technology, Delft, and Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by A. Pier Siebesma in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previously observed twice-Clausius–Clapeyron (2CC) scaling for extreme precipitation at hourly time scales has led to discussions about its origin. The robustness of this scaling is assessed by analyzing a subhourly dataset of 10-min resolution over the Netherlands. The results confirm the validity of the previously found 2CC scaling for extreme convective precipitation.

Using a simple entraining plume model, an idealized deep convective environmental temperature profile is perturbed to analyze extreme precipitation scaling from a frequently used relation based on the column condensation rate. The plume model simulates a steady precipitation increase that is greater than Clausius–Clapeyron scaling (super-CC scaling). Precipitation intensity increase is shown to be controlled by a flux of moisture through the cloud base and in-cloud lateral moisture convergence. Decomposition of this scaling relation into a dominant thermodynamic and additional dynamic component allows for better understanding of the scaling and demonstrates the importance of vertical velocity in both dynamic and thermodynamic scaling. Furthermore, systematically increasing the environmental stability by adjusting the temperature perturbations from constant to moist adiabatic increase reveals a dependence of the scaling on the change in environmental stability. As the perturbations become increasingly close to moist adiabatic, the scaling found by the entraining plume model decreases to CC scaling. Thus, atmospheric stability changes, which are expected to be dependent on the latitude, may well play a key role in the behavior of precipitation extremes in the future climate.

Corresponding author address: Jessica M. Loriaux, Delft University of Technology, P.O. Box 5048, 2628 CN, Delft, Netherlands. E-mail: j.m.loriaux@tudelft.nl

Abstract

Previously observed twice-Clausius–Clapeyron (2CC) scaling for extreme precipitation at hourly time scales has led to discussions about its origin. The robustness of this scaling is assessed by analyzing a subhourly dataset of 10-min resolution over the Netherlands. The results confirm the validity of the previously found 2CC scaling for extreme convective precipitation.

Using a simple entraining plume model, an idealized deep convective environmental temperature profile is perturbed to analyze extreme precipitation scaling from a frequently used relation based on the column condensation rate. The plume model simulates a steady precipitation increase that is greater than Clausius–Clapeyron scaling (super-CC scaling). Precipitation intensity increase is shown to be controlled by a flux of moisture through the cloud base and in-cloud lateral moisture convergence. Decomposition of this scaling relation into a dominant thermodynamic and additional dynamic component allows for better understanding of the scaling and demonstrates the importance of vertical velocity in both dynamic and thermodynamic scaling. Furthermore, systematically increasing the environmental stability by adjusting the temperature perturbations from constant to moist adiabatic increase reveals a dependence of the scaling on the change in environmental stability. As the perturbations become increasingly close to moist adiabatic, the scaling found by the entraining plume model decreases to CC scaling. Thus, atmospheric stability changes, which are expected to be dependent on the latitude, may well play a key role in the behavior of precipitation extremes in the future climate.

Corresponding author address: Jessica M. Loriaux, Delft University of Technology, P.O. Box 5048, 2628 CN, Delft, Netherlands. E-mail: j.m.loriaux@tudelft.nl
Save
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrological cycle. Nature, 419, 224232.

  • Berg, P., and J. O. Haerter, 2011: Unexpected increase in precipitation intensity with temperature—A result of mixing of precipitation types? Atmos. Res., 119, 56–61.

    • Search Google Scholar
    • Export Citation
  • Berg, P., C. Moseley, and J. O. Haerter, 2013: Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci., 6, 181–185.

    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., A. P. Siebesma, H. J. J. Jonker, and Y. de Voogd, 2012: Parameterization of the vertical velocity equation for shallow cumulus clouds. Mon. Wea. Rev., 140, 24242436.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W., and A. P. Siebesma, 2008: A simple parameterization for detrainment in shallow cumulus. Mon. Wea. Rev., 136, 560576.

  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2006: Robust increases in midlatitude static stability in simulations of global warming. Geophys. Res. Lett., 33, L24816, doi:10.1029/2006GL027504.

    • Search Google Scholar
    • Export Citation
  • Haerter, J. O., and P. Berg, 2009: Unexpected rise in extreme precipitation caused by a shift in rain type? Nat. Geosci., 2, 372373.

  • Hardwick-Jones, R., S. Westra, and A. Sharma, 2010: Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett., 37, L22805, doi:10.1029/2010GL045081.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2012: Ec-earth v2. 2: Description and validation of a new seamless earth system prediction model. Climate Dyn., 39, 26112629.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor and tropical deep convection. J. Atmos. Sci., 66, 16651683.

    • Search Google Scholar
    • Export Citation
  • Iribarne, J. V., and W. L. Godson, 1981: Atmospheric Thermodynamics. Kluwer, 259 pp.

  • Kessler, E., 1969: On Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 10, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2010: Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett.,5, 025208, doi:10.1088/1748-9326/5/2/025208.

  • Lenderink, G., H. Y. Mok, T. C. Lee, and G. J. van Oldenborgh, 2011: Scaling and trends of hourly precipitation extremes in two different climate zones—Hong kong and the Netherlands. Hydrol. Earth Syst. Sci., 15, 30333041.

    • Search Google Scholar
    • Export Citation
  • Maeda, E. E., N. Utsumi, and T. Oki, 2012: Decreasing precipitation extremes at higher temperatures in tropical regions. Nat. Hazards, 64, 935–941.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., L. E. Back, and P. A. O'Gorman, 2011: Intensification of precipitation extremes with warming in a cloud-resolving model. J. Climate, 24, 27842800.

    • Search Google Scholar
    • Export Citation
  • O'Gorman, P. A., 2012: Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci., 5, 697700.

  • O'Gorman, P. A., and T. Schneider, 2009a: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777.

    • Search Google Scholar
    • Export Citation
  • O'Gorman, P., and T. Schneider, 2009b: Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J. Climate, 22, 56765685.

    • Search Google Scholar
    • Export Citation
  • Pall, P., M. Allen, and D. Stone, 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363.

    • Search Google Scholar
    • Export Citation
  • Pall, P., T. Aina, D. A. Stone, P. A. Stott, T. Nozawa, A. G. J. Hilberts, D. Lohmann, and M. R. Allen, 2011: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470, 382385.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2011: Response of tropical precipitation to global warming. J. Atmos. Sci., 68, 123138.

  • Schneider, T., and P. A. O'Gorman, 2008: Moist convection and the thermal stratification of the extratropical troposphere. J. Atmos. Sci., 65, 35713583.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., W. Ingram, Y. Tsushima, M. Satoh, M. Roberts, P. L. Vidale, and P. A. O'Gorman, 2010: Relative humidity changes in a warmer climate. J. Geophys. Res.,115, D09104, doi:10.1029/2009JD012585.

  • Siebesma, A. P., 1998: Shallow cumulus convection. Buoyant Convection in Geophysical Flows, E. J. Plate, et al., Eds., Kluwer, 441–486.

  • Siebesma, A. P., and A. M. Holtslag, 1996: Model impacts of entrainment and detrainment rates in shallow cumulus convection. J. Atmos. Sci., 53, 23542364.

    • Search Google Scholar
    • Export Citation
  • Singleton, A., and R. Toumi, 2012: Super-Clausius–Clapeyron scaling of rainfall in a model squall line. Quart. J. Roy. Meteor. Soc.

  • Sundqvist, H., 1978: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104, 677690.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. Rasmussen, and D. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217.

    • Search Google Scholar
    • Export Citation
  • Utsumi, N., S. Seto, S. Kanae, E. E. Maeda, and T. Oki, 2011: Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett., 38, L16708, doi:10.1029/2011GL048426.

    • Search Google Scholar
    • Export Citation
  • Van Meijgaard, E., L. H. Van Ulft, W. J. van de Berg, F. C. Bosveld, B. J. J. M. Van den Hurk, G. Lenderink, and A. P. Siebesma, 2008: The KNMI regional atmospheric climate model RACMO version 2.1. Koninklijk Nederlands Meteorologisch Instituut Rep. TR-302, 43 pp.

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 886 388 62
PDF Downloads 564 203 17