Coexistence of Atmospheric Gravity Waves and Boundary Layer Rolls Observed by SAR

Xiaofeng Li * GST Inc., and NOAA/NESDIS, College Park, Maryland

Search for other papers by Xiaofeng Li in
Current site
Google Scholar
PubMed
Close
,
Weizhong Zheng IMSG, and NOAA/NCEP/EMC, College Park, Maryland

Search for other papers by Weizhong Zheng in
Current site
Google Scholar
PubMed
Close
,
Xiaofeng Yang Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xiaofeng Yang in
Current site
Google Scholar
PubMed
Close
,
Jun A. Zhang NOAA/AOML/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

Search for other papers by Jun A. Zhang in
Current site
Google Scholar
PubMed
Close
,
William G. Pichel NOAA/NESDIS/STAR, College Park, Maryland

Search for other papers by William G. Pichel in
Current site
Google Scholar
PubMed
Close
, and
Ziwei Li Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China

Search for other papers by Ziwei Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Both atmospheric gravity waves (AGW) and marine atmospheric boundary layer (MABL) rolls are simultaneously observed on an Environmental Satellite (Envisat) advanced synthetic aperture radar (ASAR) image acquired along the China coast on 22 May 2005. The synthetic aperture radar (SAR) image covers about 400 km × 400 km of a coastal area of the Yellow Sea. The sea surface imprints of AGW show the patterns of both a transverse wave along the coastal plain and a diverging wave in the lee of Mount Laoshan (1133-m peak), which indicate that terrain forcing affects the formation of AGW. The AGW have a wavelength of 8–10 km and extend about 100 km offshore. Model simulation shows that these waves have an amplitude over 3 km. Finer-scale (~2 km) brushlike roughness features perpendicular to the coast are also observed, and they are interpreted as MABL rolls. The FFT analysis shows that the roll wavelengths vary spatially. The two-way interactive, triply nested grid (9–3–1 km) Weather Research and Forecasting Model (WRF) simulation reproduces AGW-generated wind perturbations that are in phase at all levels, reaching up to the 700-hPa level for the diverging AGW and the 900-hPa level for the transverse AGW. The WRF simulation also reveals that dynamic instability, rather than thermodynamic instability, is the cause for the MABL roll generation. Differences in atmospheric inflection-point level and instability at different locations are reasons why the roll wavelengths vary spatially.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-12-0347.s1.

Corresponding author address: Xiaofeng Li, National Oceanic and Atmospheric Administration, NCWCP E/RA3, 5830 University Research Ct., Office 3216, College Park, MD 20740-3818. E-mail: xiaofeng.li@noaa.gov

Abstract

Both atmospheric gravity waves (AGW) and marine atmospheric boundary layer (MABL) rolls are simultaneously observed on an Environmental Satellite (Envisat) advanced synthetic aperture radar (ASAR) image acquired along the China coast on 22 May 2005. The synthetic aperture radar (SAR) image covers about 400 km × 400 km of a coastal area of the Yellow Sea. The sea surface imprints of AGW show the patterns of both a transverse wave along the coastal plain and a diverging wave in the lee of Mount Laoshan (1133-m peak), which indicate that terrain forcing affects the formation of AGW. The AGW have a wavelength of 8–10 km and extend about 100 km offshore. Model simulation shows that these waves have an amplitude over 3 km. Finer-scale (~2 km) brushlike roughness features perpendicular to the coast are also observed, and they are interpreted as MABL rolls. The FFT analysis shows that the roll wavelengths vary spatially. The two-way interactive, triply nested grid (9–3–1 km) Weather Research and Forecasting Model (WRF) simulation reproduces AGW-generated wind perturbations that are in phase at all levels, reaching up to the 700-hPa level for the diverging AGW and the 900-hPa level for the transverse AGW. The WRF simulation also reveals that dynamic instability, rather than thermodynamic instability, is the cause for the MABL roll generation. Differences in atmospheric inflection-point level and instability at different locations are reasons why the roll wavelengths vary spatially.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-12-0347.s1.

Corresponding author address: Xiaofeng Li, National Oceanic and Atmospheric Administration, NCWCP E/RA3, 5830 University Research Ct., Office 3216, College Park, MD 20740-3818. E-mail: xiaofeng.li@noaa.gov

Supplementary Materials

    • Supplemental Materials (AVI 8.40 MB)
Save
  • Alpers, W., and B. Brümmer, 1994: Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite. J. Geophys. Res., 99 (C6), 12 61312 621.

    • Search Google Scholar
    • Export Citation
  • Alpers, W., U. Pahl, and G. Gross, 1998: Katabatic wind fields in coastal areas studied by ERS-1 synthetic aperture radar imagery and numerical modeling. J. Geophys. Res., 103 (C4), 78757886.

    • Search Google Scholar
    • Export Citation
  • Alpers, W., A. Y. Ivanov, and K. F. Dagestad, 2011: Encounter of foehn wind with an atmospheric eddy over the Black Sea as observed by the synthetic aperture radar onboard Envisat. Mon. Wea. Rev., 139, 39924000.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., 1994: Footprints of storms on the sea: A view from spaceborne synthetic aperture radar. J. Geophys. Res., 99 (C4), 79617969.

    • Search Google Scholar
    • Export Citation
  • Babin, S. M., T. D. Sikora, and N. S. Winstead, 2003: A case study of satellite synthetic aperture radar signatures of spatially evolving atmospheric convection over the western Atlantic Ocean. Bound.-Layer Meteor., 106, 527546.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1972: On the inflection point instability of a stratified Ekman boundary layer. J. Atmos. Sci., 29, 850859.

  • Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys., 18, 683697.

    • Search Google Scholar
    • Export Citation
  • Chimonas, G., 1972: The stability of a coupled wave-turbulence system in a parallel shear flow. Bound.-Layer Meteor., 4, 444452.

  • Chunchuzov, I., P. W. Vachon, and X. Li, 2000: Analysis and modeling of atmospheric gravity waves observed in RADARSAT SAR images. Remote Sens. Environ., 74, 343361.

    • Search Google Scholar
    • Export Citation
  • Da Silva, J. C. B., and J. M. Magalhãesa, 2009: Satellite observations of large atmospheric gravity waves in the Mozambique Channel. Int. J. Remote Sens., 30, 11611182.

    • Search Google Scholar
    • Export Citation
  • Etling, D., and R. A. Brown, 1993: Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteor., 65, 215248.

  • Gan, X. L., W. G. Huang, X. F. Li, X. J. Chen, X. L. Lou, Z. X. Zhao, J. S. Yang, and A. Q. Shi, 2008: Coastally trapped atmospheric gravity waves on SAR, AVHRR and MODIS images. Int. J. Remote Sens., 29, 16211634.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1995: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 122 pp.

  • Hennings, I., R. Romeiser, W. Alpers, and A. Viola, 1999: Radar imaging of Kelvin arms of ship wakes. Int. J. Remote Sens., 20, 25192543.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., A. Stoffelen, and S. de Haan, 2007: An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res., 112, C03006, doi:10.1029/2006JC003743.

    • Search Google Scholar
    • Export Citation
  • Isoguchi, O., M. Shimada, and H. Kawamura, 2011: Characteristics of ocean surface winds in the lee of an isolated island observed by synthetic aperture radar. Mon. Wea. Rev., 139, 17441761.

    • Search Google Scholar
    • Export Citation
  • Ivanov, A. Y., W. Alpers, K. T. Litovchenko, M.-X. He, Q. Feng, M. Fang, and X.-H. Yan, 2004: Atmospheric front over the East China Sea studied by multisensor satellite and in situ data. J. Geophys. Res., 109, C12001, doi:10.1029/2004JC002432.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1973: The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci., 30, 10771091.

    • Search Google Scholar
    • Export Citation
  • Levy, G., 2001: Boundary layer roll statistics from SAR. Geophys. Res. Lett., 28, 19931995.

  • Li, H., W. Perrie, L. Guo, and B. Zhang, 2011: On polarimetric characteristics in SAR images of mesoscale cellular convection in the marine atmospheric boundary layer. J. Geophys. Res., 116, C08028, doi:10.1029/2010JC006738.

    • Search Google Scholar
    • Export Citation
  • Li, X., 2004: Atmospheric vortex streets and gravity waves. Synthetic aperture radar marine user's manual, C. R. Jackson and J. R. Apel, Eds., NOAA, 341–354.

  • Li, X., P. Clemente-Colón, W. G. Pichel, and P. W. Vachon, 2000: Atmospheric vortex streets on a RADARSAT SAR image. Geophys. Res. Lett., 27, 16551658.

    • Search Google Scholar
    • Export Citation
  • Li, X., C. Dong, P. Clemente-Colón, W. G. Pichel, and K. S. Friedman, 2004: Synthetic aperture radar observation of the sea surface imprints of upstream atmospheric solitons generated by flow impeded by an island. J. Geophys. Res., 109, C02016, doi:10.1029/2003JC002168.

    • Search Google Scholar
    • Export Citation
  • Li, X., W. Zheng, W. G. Pichel, C.-Z. Zou, and P. Clemente-Colón, 2007: Coastal katabatic winds imaged by SAR. Geophys. Res. Lett., 34, L03804, doi:10.1029/2006GL028055.

    • Search Google Scholar
    • Export Citation
  • Li, X., W. Zheng, C.-Z. Zou, and W. G. Pichel, 2008: A SAR observation and numerical study on ocean surface imprints of atmospheric vortex streets. Sensors, 8, 33213334.

    • Search Google Scholar
    • Export Citation
  • Li, X., W. Zheng, X. Yang, Z. Li, and W. G. Pichel, 2011: Sea surface imprints of coastal mountain lee waves imaged by synthetic aperture radar. J. Geophys. Res., 116, C02014, doi:10.1029/2010JC006643.

    • Search Google Scholar
    • Export Citation
  • Li, X., J. A. Zhang, X. Yang, W. G. Pichel, M. DeMaria, D. Long, and Z. Li, 2012: Tropical cyclone morphology from spaceborne synthetic aperture radar. Bull. Amer. Meteor. Soc., 94, 215230.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1966: On the instability of Ekman boundary layer. J. Atmos. Sci., 23, 481494.

  • Liu, S., Z. Li, X. Yang, W. G. Pichel, Y. Yu, Q. Zheng, and X. Li, 2010: Atmospheric frontal gravity waves observed in satellite SAR images of the Bohai Sea and Yellow Sea. Acta Oceanol. Sin., 29 (5), 3543, doi:10.1007/s13131-010-0061-8.

    • Search Google Scholar
    • Export Citation
  • Mourad, P. D., and B. A. Walter, 1996: Viewing a cold air outbreak using satellite-based synthetic aperture radar and Advanced Very High Resolution Radiometer imagery. J. Geophys. Res., 101 (C7), 16 39116 400.

    • Search Google Scholar
    • Export Citation
  • Müller, G., B. Brümmer, and W. Alpers, 1999: Roll convection within an Arctic cold-air outbreak: Interpretation of in situ aircraft measurements and spaceborne SAR imagery by a three-dimensional atmospheric model. Mon. Wea. Rev., 127, 363380.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 2002: An Introduction to Atmospheric Gravity Waves.Academic Press, 276 pp.

  • Pan, F. F., and R. B. Smith, 1999: Gap winds and wakes: SAR observations and numerical simulations. J. Atmos. Sci., 56, 905923.

  • Romeiser, R., S. Ufermann, A. Androssov, H. Wehde, L. Mitnik, S. Kern, and A. Rubino, 2004: On the remote sensing of oceanic and atmospheric convection in the Greenland Sea by synthetic aperture radar. J. Geophys. Res., 109, C03004, doi:10.1029/2003JC001975.

    • Search Google Scholar
    • Export Citation
  • Sandvik, A. D., and B. R. Furevik, 2002: Case study of a coastal jet at Spitsbergen—Comparison of SAR- and model-estimated wind. Mon. Wea. Rev., 130, 10401051.

    • Search Google Scholar
    • Export Citation
  • Shimada, T., and H. Kawamura, 2004: Wind jets and wind waves off the Pacific coast of northern Japan under winter monsoon captured by combined use of scatterometer, synthetic aperture radar, and altimeter. J. Geophys. Res., 109, C12027, doi:10.1029/2004JC002450.

    • Search Google Scholar
    • Export Citation
  • Sikora, T. D., K. S. Friedman, W. G. Pichel, and P. Clemente-Cólon, 2000: Synthetic aperture radar as a tool for investigating polar mesoscale cyclones. Wea. Forecasting, 15, 745758.

    • Search Google Scholar
    • Export Citation
  • Sikora, T. D., G. S. Young, C. M. Fisher, and M. D. Stepp, 2011: A synthetic aperture radar–based climatology of open-cell convection over the northeast Pacific Ocean. J. Appl. Meteor. Climatol., 50, 594603.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Ufermann, S., and R. Romeiser, 1999: Numerical study on signatures of atmospheric convective cells in radar images of the ocean. J. Geophys. Res., 104 (C11), 25 70725 719.

    • Search Google Scholar
    • Export Citation
  • Vachon, P. W., O. M. Johannessen, and J. A. Johannessen, 1994: An ERS 1 synthetic aperture radar image of atmospheric lee waves. J. Geophys. Res., 99 (C11), 22 48322 490.

    • Search Google Scholar
    • Export Citation
  • Valenzuela, R. G., 1978: Theories for the interaction of electromagnetic and ocean waves—A review. Bound.-Layer Meteor., 13, 6185.

  • Winstead, N. S., T. D. Sikora, D. R. Thompson, and P. D. Mourad, 2002: Direct influence of gravity waves on surface-layer stress during a cold air outbreak, as shown by synthetic aperture radar. Mon. Wea. Rev., 130, 27642776.

    • Search Google Scholar
    • Export Citation
  • Winstead, N. S., and Coauthors, 2006: Using SAR remote sensing, field observations, and models to better understand coastal flows in the Gulf of Alaska. Bull. Amer. Meteor. Soc., 87, 787800.

    • Search Google Scholar
    • Export Citation
  • Wippermann, E., D. Etling, and H. J. Kirstein, 1978: On the instability of a planetary boundary layer with Rossby-number similarity. Part II: The combined effect of inflection point instability and convective instability. Bound.-Layer Meteor., 15, 301321.

    • Search Google Scholar
    • Export Citation
  • Yang, X., X. Li, Q. Zheng, X. Gu, W. G. Pichel, and Z. Li, 2010: Comparison of ocean-surface winds retrieved from QuikSCAT scatterometer and Radarsat-1 SAR in offshore waters of the U.S. West Coast. IEEE Geosci. Remote Sens. Lett., 8, 163167.

    • Search Google Scholar
    • Export Citation
  • Yang, X., X. Li, W. G. Pichel, and Z. Li, 2011: Comparison of ocean surface winds from ENVISAT ASAR, MetOp ASCAT scatterometer, buoy measurements, and NOGAPS model. IEEE Trans. Geosci. Remote Sens., 49, 47434750.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., and N. S. Winstead, 2005: Meteorological phenomena in high resolution SAR wind imagery. High Resolution Wind Monitoring with Wide Swath SAR: A User's Guide, R. C. Beal, Ed., NOAA, 13–31.

  • Young, G. S., D. A. R. Kristovich, M. R. Hjelmfelt, and R. C. Foster, 2002: Rolls, streets, waves, and more: A review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull. Amer. Meteor. Soc., 83, 9971001.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., T. D. Sikora, and N. S. Winstead, 2005: Use of synthetic aperture radar in fine-scale surface analysis of synoptic-scale fronts at sea. Wea. Forecasting, 20, 311327.

    • Search Google Scholar
    • Export Citation
  • Zheng, Q. A., X.-H. Yan, V. Klemas, C.-R. Ho, N.-J. Kuo, and Z. Wang, 1998: Coastal lee waves on ERS-1 SAR images. J. Geophys. Res., 103 (C4), 79797993.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 482 300 7
PDF Downloads 304 125 8