Catastrophe-Concept-Based Cumulus Parameterization: Correction of Systematic Errors in the Precipitation Diurnal Cycle over Land in a GCM

Winston C. Chao Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Winston C. Chao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The onset of cumulus convection in a grid column is a catastrophe, also known as a subcritical instability. Accordingly, in designing a cumulus parameterization scheme the onset of cumulus convection requires that a parameter crosses a critical value and the termination of cumulus convection requires that the same or a different parameter crosses a different critical value. Once begun, cumulus convection continues to exist, regardless of whether the onset criterion is still met, until the termination criterion is met. Also, the intensity of cumulus precipitation is related to how far the state is from the termination, not the onset, criterion.

The cumulus parameterization schemes currently in use in GCMs, however, treat the onset of cumulus convection as a supercritical instability; namely, convection is turned on when a parameter exceeds a critical value and is turned off when the same parameter falls below the same critical value. Also, the intensity of cumulus precipitation is related to how far this critical value has been exceeded. Among the adverse consequences of the supercritical-instability-concept-based cumulus parameterization schemes are that over relatively flat land the precipitation peak occurs around noon—4–6 h too soon—and that the amplitude of the precipitation diurnal cycle is too weak.

Based on the above-mentioned concept, a new cumulus parameterization scheme was designed by taking advantage of the existing infrastructure of the relaxed Arakawa–Schubert scheme (RAS), but replacing RAS's guiding principle with the catastrophe concept. Test results using NASA's Goddard Earth Observing System GCM, version 5 (GEOS-5), show dramatic improvement in the phase and amplitude of the precipitation diurnal cycle over relatively flat land.

Corresponding author address: Dr. Winston C. Chao, Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Mail Code 610.1, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: winston.c.chao@nasa.gov

Abstract

The onset of cumulus convection in a grid column is a catastrophe, also known as a subcritical instability. Accordingly, in designing a cumulus parameterization scheme the onset of cumulus convection requires that a parameter crosses a critical value and the termination of cumulus convection requires that the same or a different parameter crosses a different critical value. Once begun, cumulus convection continues to exist, regardless of whether the onset criterion is still met, until the termination criterion is met. Also, the intensity of cumulus precipitation is related to how far the state is from the termination, not the onset, criterion.

The cumulus parameterization schemes currently in use in GCMs, however, treat the onset of cumulus convection as a supercritical instability; namely, convection is turned on when a parameter exceeds a critical value and is turned off when the same parameter falls below the same critical value. Also, the intensity of cumulus precipitation is related to how far this critical value has been exceeded. Among the adverse consequences of the supercritical-instability-concept-based cumulus parameterization schemes are that over relatively flat land the precipitation peak occurs around noon—4–6 h too soon—and that the amplitude of the precipitation diurnal cycle is too weak.

Based on the above-mentioned concept, a new cumulus parameterization scheme was designed by taking advantage of the existing infrastructure of the relaxed Arakawa–Schubert scheme (RAS), but replacing RAS's guiding principle with the catastrophe concept. Test results using NASA's Goddard Earth Observing System GCM, version 5 (GEOS-5), show dramatic improvement in the phase and amplitude of the precipitation diurnal cycle over relatively flat land.

Corresponding author address: Dr. Winston C. Chao, Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Mail Code 610.1, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: winston.c.chao@nasa.gov
Save
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525.

  • Arakawa, A., and W. H. Schubert, 1974: The interaction of a cumulus ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63, 33833403.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J. P. Charoureau, A. Beljaars, A. K. Betts, M. Köhler, M. Miller, and J.-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31103137.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., F. Guichard, J.-L. Redelsperger, and J.-P. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection over land. Quart. J. Roy. Meteor. Soc., 130, 31053117, doi:10.1256/qj.03.132.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., 1985: Stratospheric sudden warmings as catastrophes. J. Atmos. Sci., 42, 16311646.

  • Chao, W. C., 2008: Understanding atmospheric catastrophes. Recent Progress in Atmospheric Sciences: Applications to the Asia–Pacific Region, K.-N. Liou and M.-D. Chou, Eds., World Scientific, 89–103.

  • Chao, W. C., 2012: Correction of excessive precipitation over steep and high mountains in a GCM. J. Atmos. Sci., 69, 15471561.

  • Chen, S. S., and R. A. Houze, 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. Technical Report Series on Global Modeling and Data Assimilation, Vol. 3, NASA Tech. Memo. NASA/TM-104606, 102 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/tm/docs/Chou128.pdf.]

  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. Technical Report Series on Global Modeling and Data Assimilation, Vol. 15, NASA Tech. Memo. NASA/TM-1999-104606, 40 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/tm/docs/Chou136.pdf.]

  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104 (D6), 63776402.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Climate Dyn., 39, 399418, doi:10.1007/s00382-011-1127-9.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 23132335.

  • Garcia, R. R., and B. A. Boville, 1994: Downward control of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51, 22382245.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and Coauthors, 2006: Daytime convective development over land: A model intercomparison based on LBA observations. Quart. J. Roy. Meteor. Soc., 132, 317344.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J.-Y., and J.-P. Lafore, 2010: A density current parameterization coupled with Emanuel's convection scheme. Part I: The models. J. Atmos. Sci., 67, 881897.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and C. S. Bretherton, 2011: Simulating deep convection with a shallow convection scheme. Atmos. Chem. Phys., 11, 10 38910 406.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1977: Structure and dynamics of a tropical squall line system. Mon. Wea. Rev., 105, 15401567.

  • Jones, T. R., and D. A. Randall, 2011: Quantifying the limits of convective parameterizations. J. Geophys. Res., 116, D08210, doi:10.1029/2010JD014913.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., C. A. DeMott, and D. A. Randall, 2008: Evaluation of the simulated interannual and subseasonal variability in an AMIP-style simulation using the CSU multiscale modeling framework. J. Climate, 21, 413431.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1996: Energy and water balance calculations in the Mosaic LSM. Technical Report Series on Global Modeling and Data Assimilation, Vol. 9, NASA Tech Memo. 104606, 76 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/tm/docs/Koster130.pdf.]

  • Kuang, Z., and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., and Coauthors, 2007a: Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J. Climate, 20, 18621881.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., S. D. Schubert, M. J. Suarez, T. L. Bell, and K.-M. Kim, 2007b: The diurnal cycle of precipitation in the NASA Seasonal to Interannual Prediction Project atmospheric general circulation model. J. Geophys. Res., 112, D16111, doi:10.1029/2006JD008346.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A ‘‘vertically Lagrangian'' finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Lin, X., D. A. Randall, and L. D. Fowler, 2000: Diurnal variability of the hydrologic cycle and radiative fluxes: Comparisons between observations and a GCM. J. Climate, 13, 41594179.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 13871399.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., W. C. Chao, and A. Arakawa, 1982: Interaction of a cumulus cloud ensemble with the large-scale environment. Part IV: The discrete model. J. Atmos. Sci., 39, 104113.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Mapes, B. E., 1997: Equilibrium vs. activation control of large-scale variations of tropical deep convection. The Physics and Parameterization of Moist Atmospheric Convection, R. K. Smith, Ed., NATO ASI Series C, Vol. 505, Kluwer Academic Publishers, 321–358.

  • Mapes, B. E., and R. Neale, 2011: Parameterizing convective organization to escape the entrainment dilemma. J. Adv. Model. Earth Syst., 3, M06004, doi:10.1029/2011MS000042.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800.

    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, J. Bacmeister, I.-S. Song, and A. Eichmann, 2012: The GEOS-5 atmospheric general circulation model: Mean climate and development from MERRA to Fortuna. Technical Report Series on Global Modeling and Data Assimilation, Vol. 28, NASA Tech. Memo. NASA/TM–2012-104606. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Molod484.pdf.]

  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002.

    • Search Google Scholar
    • Export Citation
  • Pan, D.-M., and D. A. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124, 949981.

  • Pritchard, M. S., and R. C. J. Somerville, 2009: Assessing the diurnal cycle of precipitation in a multi-scale climate model. J. Adv. Model. Earth Syst., 1 (12), doi:10.3894/JAMES.2009.1.12.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and M. J. Suarez, 2011: Cloud-system resolving simulations with the NASA Goddard Earth Observing System global atmospheric model (GEOS-5). Geophys. Res. Lett., 38, L16809, doi:10.1029/2011GL048438.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and D.-M. Pan, 1993: Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 137–144.

  • Randall, D. A., Harshvardhan, and D. A. Dazlich, 1991: Diurnal variability of the hydrological cycle in a general circulation model. J. Atmos. Sci., 48, 4062.

    • Search Google Scholar
    • Export Citation
  • Rio, C., F. Hourdin, J.-Y. Grandpeix, and J.-P. Lafore, 2009: Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett., 36, L07809, doi:10.1029/2008GL036779.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., 2000: A retrospective view of Arakawa's ideas on cumulus parameterization. General Circulation Model Development, D. A. Randall, Ed., Academic Press, 181–198.

  • Tao, W.-K., and Coauthors, 2009: A multiscale modeling system: Developments, applications, and critical issues. Bull. Amer. Meteor. Soc., 90, 519534.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1989a: Numerical study of an observed orogenic mesoscale convective system. Part I: Simulated genesis and comparison with observations. Mon. Wea. Rev., 117, 273304.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1989b: Numerical study of an observed orogenic mesoscale convective system. Part II: Analysis of governing dynamics. Mon. Wea. Rev., 117, 305328.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., A. Arakawa, and S. K. Krueger, 1992: The macroscopic behavior of cumulus ensembles simulated by a cumulus ensemble model. J. Atmos. Sci., 49, 24022420.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 51905226.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 383 183 5
PDF Downloads 70 30 2