Response of Tropical Deep Convection to Localized Heating Perturbations: Implications for Aerosol-Induced Convective Invigoration

Hugh Morrison National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
and
Wojciech W. Grabowski National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Wojciech W. Grabowski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A cloud-system-resolving model is used to investigate the effects of localized heating/cooling perturbations on tropical deep convection, in the context of the aerosol “invigoration effect.” This effect supposes that a reduction of droplet collision–coalescence in polluted conditions leads to lofting of cloud water in convective updrafts and enhanced freezing, latent heating, and buoyancy. To specifically isolate and test this mechanism, heating perturbations were applied to updrafts with corresponding cooling applied in downdrafts. Ensemble simulations were run with either perturbed or unperturbed conditions and large-scale forcing from a 7.5-day period of active monsoon conditions during the 2006 Tropical Warm Pool–International Cloud Experiment. In the perturbed simulations there was an initial invigoration of convective updrafts and surface precipitation, but convection returned to its unperturbed state after about 24 h because of feedback with the larger-scale environment. This feedback led to an increase in the horizontally averaged mid-/upper-tropospheric temperature of about 1 K relative to unperturbed simulations. When perturbed conditions were applied to only part of the domain, gravity waves rapidly dispersed buoyancy anomalies in the perturbed region to the rest of the domain, allowing convective invigoration from the heating perturbations to be sustained over the entire simulation period. This was associated with a mean mesoscale circulation consisting of ascent (descent) at mid-/upper levels in the perturbed (unperturbed) region. In contrast to recent studies, it is concluded that the invigoration effect is intimately coupled with larger-scale dynamics through a two-way feedback, and in the absence of alterations in the larger-scale circulation there is limited invigoration beyond the convective adjustment time scale.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Hugh Morrison, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80307. E-mail: morrison@ucar.edu

Abstract

A cloud-system-resolving model is used to investigate the effects of localized heating/cooling perturbations on tropical deep convection, in the context of the aerosol “invigoration effect.” This effect supposes that a reduction of droplet collision–coalescence in polluted conditions leads to lofting of cloud water in convective updrafts and enhanced freezing, latent heating, and buoyancy. To specifically isolate and test this mechanism, heating perturbations were applied to updrafts with corresponding cooling applied in downdrafts. Ensemble simulations were run with either perturbed or unperturbed conditions and large-scale forcing from a 7.5-day period of active monsoon conditions during the 2006 Tropical Warm Pool–International Cloud Experiment. In the perturbed simulations there was an initial invigoration of convective updrafts and surface precipitation, but convection returned to its unperturbed state after about 24 h because of feedback with the larger-scale environment. This feedback led to an increase in the horizontally averaged mid-/upper-tropospheric temperature of about 1 K relative to unperturbed simulations. When perturbed conditions were applied to only part of the domain, gravity waves rapidly dispersed buoyancy anomalies in the perturbed region to the rest of the domain, allowing convective invigoration from the heating perturbations to be sustained over the entire simulation period. This was associated with a mean mesoscale circulation consisting of ascent (descent) at mid-/upper levels in the perturbed (unperturbed) region. In contrast to recent studies, it is concluded that the invigoration effect is intimately coupled with larger-scale dynamics through a two-way feedback, and in the absence of alterations in the larger-scale circulation there is limited invigoration beyond the convective adjustment time scale.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Hugh Morrison, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80307. E-mail: morrison@ucar.edu
Save
  • Allen, G., and Coauthors, 2008: Aerosol and trace-gas measurements in the Darwin area during the wet season. J. Geophys. Res., 113, D06306, doi:10.1029/2007JD008706.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. Smolarkiewicz, 1989: Gravity waves, compensating subsidence, and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759.

    • Search Google Scholar
    • Export Citation
  • Cohen, B. G., and C. G. Craig, 2004: The response time of a convective cloud ensemble to a change in forcing. Quart. J. Roy. Meteor. Soc., 130, 933944.

    • Search Google Scholar
    • Export Citation
  • Ekman, A. M. L., A. Engstrom, and A. Soderberg, 2011: Impact of two-way aerosol–cloud interaction and changes in aerosol size distribution on simulated aerosol-induced deep convective cloud sensitivity. J. Atmos. Sci., 68, 685697.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fan, J., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, doi:10.1029/2009JD012352.

    • Search Google Scholar
    • Export Citation
  • Fan, J., L. R. Leung, Z. Li, H. Morrison, Y. Qian, Y. Zhou, and H. Chen, 2012a: Aerosol impacts on clouds and precipitation in southeast China: Results from bin and bulk microphysics. J. Geophys. Res., 117, D00K36, doi:10.1029/2011JD016537.

    • Search Google Scholar
    • Export Citation
  • Fan, J., D. Rosenfeld, Y. Ding, L. R. Leung, and Z. Li, 2012b: Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geophys. Res. Lett., 39, L09806, doi:10.1029/2012GL051851.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and Coauthors, 2012: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CPRP). J. Atmos. Sci., 58, 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2004: An improved framework for superparameterization. J. Atmos. Sci., 61, 19401952.

  • Grabowski, W. W., 2006: Indirect impact of atmospheric aerosols in idealized simulations of convective–radiative quasi equilibrium. J. Climate, 19, 46644682.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and P. K. Smolarkiewicz, 1999: CRCP: A cloud resolving convection parameterization for modeling the tropical convecting atmosphere. Physica D, 133, 171178.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. W. Moncrieff, 2004: Moisture-convection feedback in the tropics. Quart. J. Roy. Meteor. Soc., 130, 30813104.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2011: Impact of atmospheric aerosols in simulations of convective–radiative quasi equilibrium: Double-moment microphysics. J. Climate, 24, 18971912.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, M. W. Moncrieff, and W. D. Hall, 1998: Cloud-resolving modeling of cloud systems during phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 32643282.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and B. Lynn, 2009: Simulation of a supercell storm in clean and dirty atmosphere using weather research and forecast model with spectral bin microphysics. J. Geophys. Res., 114, D19209, doi:10.1029/2009JD011827.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, and B. P. Briegleb, 1994: The simulated earth radiation budget of the National Center for Atmospheric Research community climate model CCM2 and comparisons with the Earth Radiation Budget Experiment (ERBE). J. Geophys. Res., 99 (D10), 20 81520 827.

    • Search Google Scholar
    • Export Citation
  • Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, doi:10.1029/2005GL0232187.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2010: Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implications for the dynamics of convective coupled waves. J. Atmos. Sci., 67, 941962.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and J. H. Seinfeld, 2011: Theoretical basis for convective invigoration due to increased aerosol concentration. Atmos. Chem. Phys., 11, 54075429.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., 2012: Effect of aerosol on circulations and precipitation in deep convective clouds. J. Atmos. Sci., 69, 19571974.

  • Lee, S.-S., and G. Feingold, 2010: Precipitating cloud-system response to aerosol perturbations. Geophys. Res. Lett., 37, L23806, doi:10.1029/2010GL045596.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., L. J. Donner, V. T. J. Phillips, and Y. Ming, 2008: Examination of aerosol effects on precipitation in deep convective clouds during the 1997 ARM summer experiment. Quart. J. Roy. Meteor. Soc., 134, 12011220.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., G. Feingold, and P. Y. Chuang, 2012: Effect of aerosol on cloud–environmental interactions in trade cumulus. J. Atmos. Sci., 69, 3607–3632.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2004: Sensitivities of cumulus-ensemble rainfall in a cloud-resolving model with parameterized large-scale dynamics. J. Atmos. Sci., 61, 23082317.

    • Search Google Scholar
    • Export Citation
  • May, P. T., J. H. Mather, G. Vaughan, and C. Jakob, 2008: Characterizing oceanic convective cloud systems: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 153155.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2012: On the robustness of aerosols effects on an idealized supercell storm simulated using a cloud system-resolving model. Atmos. Chem. Phys., 12, 76897705, doi:10.5194/acp-12-7689-2012.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2007: Comparison of bulk and bin warm rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 28392861.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008a: Modeling supersaturation and subgrid-scale mixing with two-moment warm bulk microphysics. J. Atmos. Sci., 65, 792812.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008b: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 15281548.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2011: Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Atmos. Chem. Phys., 11, 10 50310 523, doi:10.5194/acp-11-10503-2011.

    • Search Google Scholar
    • Export Citation
  • Nie, J., and Z. Kuang, 2012: Response of shallow cumulus convection to large-scale temperature and moisture perturbations: A comparison of large-eddy simulations and a convective parameterization based on stochastically entraining parcels. J. Atmos. Sci., 69, 19361956.

    • Search Google Scholar
    • Export Citation
  • Petch, J. C., P. N. Blossey, and C. S. Bretherton, 2008: Differences in the lower troposphere in two- and three-dimensional cloud-resolving model simulations of deep convection. Quart. J. Roy. Meteor. Soc., 134, 19411946.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and L. J. Donner, 2006: Cloud microphysics, radiation, and vertical velocities in two- and three-dimensional simulations of deep convection. Quart. J. Roy. Meteor. Soc., 132, 30113033.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O'Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms. Meteor. Atmos. Phys., 92, 4566.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., C. Kohler, and K. Beheng, 2012: Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmos. Chem. Phys., 12, 709715.

    • Search Google Scholar
    • Export Citation
  • Storer, R. L., and S. C. van den Heever, 2013: Microphysical processes evident in aerosol forcing of tropical deep convective clouds. J. Atmos. Sci., 70, 430446.

    • Search Google Scholar
    • Export Citation
  • Tan, Z.-M., F. Zhang, R. Rotunno, and C. Snyder, 2004: Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection. J. Atmos. Sci., 61, 17941804.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, doi:10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys.,50, RG2001, doi:10.1029/2011RG000369.

  • Tompkins, A. M., 2000: The impact of dimensionality on long-term cloud-resolving model simulations. Mon. Wea. Rev., 128, 15211535.

  • Tompkins, A. M., and G. C. Craig, 1998: Time-scales of adjustment to radiative-convective equilibrium in the tropical atmosphere. Quart. J. Roy. Meteor. Soc., 124, 26932713.

    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and B. E. Mapes, 2010: Transient environmental sensitivities of explicitly simulated tropical convection. J. Atmos. Sci., 67, 923940.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. G. Carrio, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. L. Stephens, and N. B. Wood, 2011: Aerosol indirect effects on tropical convective characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci., 68, 699718.

    • Search Google Scholar
    • Export Citation
  • Xie, S., T. Hume, C. Jakob, S. A. Klein, R. McCoy, and M. Zhang, 2010: Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE. J. Climate, 23, 5779.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 35793594.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 233 95 9
PDF Downloads 150 58 10