A Novel Scheme for Parameterizing Aerosol Processing in Warm Clouds

Zachary J. Lebo Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Zachary J. Lebo in
Current site
Google Scholar
PubMed
Close
and
Hugh Morrison Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A novel two-moment bulk aerosol parameterization is derived from a state-of-the-art 2D bin microphysics model using power-law relationships and a semi-analytical technique for activation. The activation scheme predicts both number and mass of a lognormal aerosol distribution and permits the evolution of the modal mass with time. The newly developed bulk aerosol scheme is formulated for use in traditional two-moment bulk microphysics models. The new explicit scheme is compared with the 2D bin scheme and a simple scaling aerosol parameterization, in which all the aerosol processes are scaled to the respective cloud process rates, in a kinematic model with a specified flow field. Hybrid simulations in which the explicit activation formulation is coupled to the scaling parameterization are also performed. Model results demonstrate the significance of including a physically realistic representation of aerosols contained in haze, cloud droplets, and rain. It is shown that the explicit aerosol parameterization and scaling method predict similar bulk aerosol quantities and match the results of the 2D bin model only if an explicit treatment of aerosol activation—that is, both aerosol number and mass transfer because of activation—is included in the microphysics model.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Zachary J. Lebo, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: lebo@ucar.edu

Abstract

A novel two-moment bulk aerosol parameterization is derived from a state-of-the-art 2D bin microphysics model using power-law relationships and a semi-analytical technique for activation. The activation scheme predicts both number and mass of a lognormal aerosol distribution and permits the evolution of the modal mass with time. The newly developed bulk aerosol scheme is formulated for use in traditional two-moment bulk microphysics models. The new explicit scheme is compared with the 2D bin scheme and a simple scaling aerosol parameterization, in which all the aerosol processes are scaled to the respective cloud process rates, in a kinematic model with a specified flow field. Hybrid simulations in which the explicit activation formulation is coupled to the scaling parameterization are also performed. Model results demonstrate the significance of including a physically realistic representation of aerosols contained in haze, cloud droplets, and rain. It is shown that the explicit aerosol parameterization and scaling method predict similar bulk aerosol quantities and match the results of the 2D bin model only if an explicit treatment of aerosol activation—that is, both aerosol number and mass transfer because of activation—is included in the microphysics model.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Zachary J. Lebo, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: lebo@ucar.edu
Save
  • Abramowitz, M., and I. A. Stegun, 1972: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications, 1046 pp.

  • Ackerman, A. S., O. B. Toon, and P. V. Hobbs, 1995: A model for particle microphysics, turbulent mixing, and radiative transfer in the stratocumulus-topped marine boundary layer and comparisons with measurements. J. Atmos. Sci., 52, 12041236.

    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 10141017.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Allen, G., and Coauthors, 2011: South east Pacific atmospheric composition and variability sampled along 20°S during VOCALS-REx. Atmos. Chem. Phys., 11, 52375262, doi:10.5194/acp-11-5237-2011.

    • Search Google Scholar
    • Export Citation
  • Alley, R., and Coauthors, 2007: Summary for policymakers. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 1–18.

  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864.

  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55, 22842293.

  • Bretherton, C. S., P. N. Blossey, and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34, L03813, doi:10.1029/2006GL027648.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C., L. Xue, Z. J. Lebo, H. Wang, R. M. Rasmussen, and J. H. Seinfeld, 2011: A comprehensive numerical study of aerosol–cloud–interactions in marine stratocumulus. Atmos. Chem. Phys., 11, 97499769, doi:10.5194/acp-11-9749-2011.

    • Search Google Scholar
    • Export Citation
  • Dinh, T., and D. R. Durran, 2012: A hybrid bin scheme to solve the condensation/evaporation equation using a cubic distribution function. Atmos. Chem. Phys., 12, 10031011, doi:10.5194/acp-12-1003-2012.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., S. M. Kreidenweis, B. Stevens, and W. R. Cotton, 1996: Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision-coalescence. J. Geophys. Res., 101 (D16), 21 39121 402.

    • Search Google Scholar
    • Export Citation
  • Flossman, A. I., W. D. Hall, and H. R. Pruppacher, 1985: A theoretical study of the wet removal of atmospheric pollutants. Part I: The redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops. J. Atmos. Sci., 42, 582606.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L. Wang, 2009: Diffusional and accretional growth of water drops in a rising adiabatic parcel: Effects of turbulent collision kernel. Atmos. Chem. Phys., 9, 23352353.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, F. B., 1956: Introduction to Numerical Analysis. McGraw-Hill, 669 pp.

  • Hill, A. A., G. Feingold, and H. Jiang, 2009: The influence of entrainment and mixing assumption on aerosol–cloud interactions in marine stratocumulus. J. Atmos. Sci., 66, 14501464.

    • Search Google Scholar
    • Export Citation
  • Kazil, J., H. Wang, G. Feingold, A. D. Clarke, J. R. Snider, and A. R. Bandy, 2011: Modeling chemical and aerosol processes in the transition from closed to open cells during VOCALS-REx. Atmos. Chem. Phys., 11, 74917514, doi:10.5194/acp-11-7491-2011.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., M. P. Khairoutdinov, D. K. Lilly, Z. N. Kogan, and Q. Liu, 1995: Modeling of stratocumulus cloud layers in a large-eddy simulation model with explicit microphysics. J. Atmos. Sci., 52, 29232940.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and J. H. Seinfeld, 2011: A continuous spectral aerosol-droplet microphysics model. Atmos. Chem. Phys.,11, 12 297–12 316, doi:10.5194/acp-11-12297-2011.

  • Liu, Q., Y. L. Kogan, D. K. Lilly, and M. F. Khairoutdinov, 1997: Variational optimization method for calculation of cloud drop growth in an Eularian drop-size framework. J. Atmos. Sci., 54, 21152131.

    • Search Google Scholar
    • Export Citation
  • Long, A. B., 1974: Solutions to the droplet collection equation for polynomial kernels. J. Atmos. Sci., 31, 10401052.

  • Lu, M.-L., and J. H. Seinfeld, 2005: Study of the aerosol indirect effect by large-eddy simulation of marine stratocumulus. J. Atmos. Sci., 62, 39093932.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., B. Stevens, I. M. Held, M. Zhao, D. L. Williamson, J. G. Olson, and C. S. Bretherton, 2008: Aquaplanets, climate sensitivity, and low clouds. J. Climate, 21, 49744991.

    • Search Google Scholar
    • Export Citation
  • Mitra, S. K., J. Brinkmann, and H. T. Pruppacher, 1992: A wind tunnel study on the drop-to-particle conversion. J. Aerosol Sci., 23, 245256.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 28392861.

    • Search Google Scholar
    • Export Citation
  • Ovchinnikov, M., and R. C. Easter, 2010: Modeling aerosol growth by aqueous chemistry in a nonprecipitating stratiform cloud. J. Geophys. Res., 115,D14210, doi:10.1029/2009JD012816.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 954 pp.

  • Rasinski, P., H. Pawlowska, and W. Graboski, 2011: Observations and kinematic modeling of drizzling marine stratocumulus. Atmos. Res., 102, 120135.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Butterworth-Heinemann, 290 pp.

  • Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion, and self-collection. Atmos. Res., 59–60, 265281.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics. 2nd ed. John Wiley and Sons, Inc., 1203 pp.

  • Shima, S., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 1984: A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. J. Comput. Phys., 54, 325362.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and L. G. Margolin, 1998: MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys., 140, 459480.

    • Search Google Scholar
    • Export Citation
  • Szumowski, M. J., W. W. Grabowski, and H. T. Ochs III, 1998: Simple two-dimensional kinematic framework designed to test warm rain microphysics models. Atmos. Res., 45, 299326.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152.

  • Wang, H., and G. Feingold, 2009a: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci., 66, 32373256.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and G. Feingold, 2009b: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part II: The microphysics and dynamics of the boundary region between open and closed cells. J. Atmos. Sci., 66, 32573275.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in the GCM ensembles. Climate Dyn., 27, 1738.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2007: Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci., 64, 26572669.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011: The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654, doi:10.5194/acp-11-627-2011.

    • Search Google Scholar
    • Export Citation
  • Xue, L., A. Teller, R. Rasmussen, I. Geresdi, and Z. Pan, 2010: Effects of aerosol solubility and regeneration on warm-phase orographic clouds and precipitation simulated by a detailed bin microphysics scheme. J. Atmos. Sci., 67, 33363354.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 167 60 2
PDF Downloads 116 42 0