Scale Dependency of Total Water Variance and Its Implication for Cloud Parameterizations

Vera Schemann Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Vera Schemann in
Current site
Google Scholar
PubMed
Close
,
Bjorn Stevens Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Bjorn Stevens in
Current site
Google Scholar
PubMed
Close
,
Verena Grützun Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Verena Grützun in
Current site
Google Scholar
PubMed
Close
, and
Johannes Quaas Universität Leipzig, Institute for Meteorology, Leipzig, Germany

Search for other papers by Johannes Quaas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The scale dependency of variance of total water mixing ratio is explored by analyzing data from a general circulation model (GCM), a numerical weather prediction model (NWP), and large-eddy simulations (LESs). For clarification, direct numerical simulation (DNS) data are additionally included, but the focus is placed on defining a general scaling behavior for scales ranging from global down to cloud resolving. For this, appropriate power-law exponents are determined by calculating and approximating the power density spectrum. The large-scale models (GCM and NWP) show a consistent scaling with a power-law exponent of approximately −2. For the high-resolution LESs, the slope of the power density spectrum shows evidence of being somewhat steeper, although the estimates are more uncertain. Also the transition between resolved and parameterized scales in a current GCM is investigated. Neither a spectral gap nor a strong scale break is found, but a weak scale break at high wavenumbers cannot be excluded. The evaluation of the parameterized total water variance of a state-of-the-art statistical scheme shows that the scale dependency is underestimated by this parameterization. This study and the discovered general scaling behavior emphasize the need for a development of scale-dependent parameterizations.

Corresponding author address: Vera Schemann, Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany. E-mail: vera.schemann@zmaw.de

Abstract

The scale dependency of variance of total water mixing ratio is explored by analyzing data from a general circulation model (GCM), a numerical weather prediction model (NWP), and large-eddy simulations (LESs). For clarification, direct numerical simulation (DNS) data are additionally included, but the focus is placed on defining a general scaling behavior for scales ranging from global down to cloud resolving. For this, appropriate power-law exponents are determined by calculating and approximating the power density spectrum. The large-scale models (GCM and NWP) show a consistent scaling with a power-law exponent of approximately −2. For the high-resolution LESs, the slope of the power density spectrum shows evidence of being somewhat steeper, although the estimates are more uncertain. Also the transition between resolved and parameterized scales in a current GCM is investigated. Neither a spectral gap nor a strong scale break is found, but a weak scale break at high wavenumbers cannot be excluded. The evaluation of the parameterized total water variance of a state-of-the-art statistical scheme shows that the scale dependency is underestimated by this parameterization. This study and the discovered general scaling behavior emphasize the need for a development of scale-dependent parameterizations.

Corresponding author address: Vera Schemann, Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany. E-mail: vera.schemann@zmaw.de
Save
  • André, J. C., G. D. Moor, P. Lacarrre, and R. D. Vachat, 1976: Turbulence approximation for inhomogeneous flows: Part I. The clipping approximation. J. Atmos. Sci., 33, 476–481.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., J.-H. Jung, and C.-M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11, 37313742, doi:10.5194/acp-11-3731-2011.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Foerstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905.

    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., and Coauthors, 2013: Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison. J. Adv. Model. Earth Syst.,5, 234–258, doi:10.1002/jame.20025.

  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., R. E. Newell, and G. W. Sachse, 2000: Anomalous scaling of mesoscale tropospheric humidity fluctuations. Geophys. Res. Lett., 27, 377380.

    • Search Google Scholar
    • Export Citation
  • Cusack, S., J. M. Edwards, and R. Kershaw, 1999: Estimating the subgrid variance of saturation, and its parametrization for use in a GCM cloud scheme. Quart. J. Roy. Meteor. Soc., 125, 30573076, doi:10.1002/qj.49712556013.

    • Search Google Scholar
    • Export Citation
  • Fischer, L., C. Kiemle, and G. C. Craig, 2012: Height-resolved variability of midlatitude tropospheric water vapor measured by an airborne lidar. Geophys. Res. Lett.,39, L06803, doi:10.1029/2011GL050621.

  • Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27, 787813, doi:10.1007/s00382-006-0158-0.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and J. Teixeira, 2009: A global climatology of temperature and water vapor variance scaling from the atmospheric infrared sounder. J. Climate, 22, 55585576.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2011: Temperature and water vapor variance scaling in global models: Comparisons to satellite and aircraft data. J. Atmos. Sci., 68, 21562168.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., R. Pincus, C. Hannay, and K.-M. Xu, 2005: How might a statistical cloud scheme be coupled to a mass-flux convection scheme? J. Geophys. Res.,110, D15S06, doi:10.1029/2004JD005017.

  • Larson, V. E., and J.-C. Golaz, 2005: Using probability density functions to derive consistent closure relationships among higher-order moments. Mon. Wea. Rev., 133, 1023–1042.

    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., 2010: The evaporatively driven cloud-top mixing layer. J. Fluid Mech., 660, 5–36, doi:10.1017/S0022112010002831.

  • Nastrom, G. D., W. H. Jasperson, and K. S. Gage, 1986: Horizontal spectra of atmospheric tracers measured during the global atmospheric sampling program. J. Geophys. Res., 91 (D12), 13 20113 209.

    • Search Google Scholar
    • Export Citation
  • NCL, 2012: The NCAR Command Language (version 6.0.0). UCAR/NCAR/CISL/VETS. [Available online at http://dx.doi.org/10.5065/D6WD3XH5.]

  • Pressel, K. G., and W. D. Collins, 2012: First-order structure function analysis of statistical scale invariance in the AIRS-observed water vapor field. J. Climate, 25, 5538–5555.

    • Search Google Scholar
    • Export Citation
  • Quaas, J., 2012: Evaluating the “critical relative humidity” as a measure of subgrid-scale variability of humidity in general circulation model cloud cover parameterizations using satellite data. J. Geophys. Res., 117, D09208, doi:10.1029/2012JD017495.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Rauber, R. M., and Coauthors, 2007: Rain in shallow cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 1912–1928.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514, doi:10.1016/j.jcp.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and T. Heus, 2013: Large-eddy simulation of organized precipitating trade wind cumulus clouds. Atmos. Chem. Phys. Discuss., 13, 18551889, doi:10.5194/acpd-13-1855-2013.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and A. Seifert, 2008: On the sensitivity of simulations of shallow cumulus convection to their microphysical representation. J. Meteor. Soc. Japan, 86A, 143162.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., C.-H. Moeng, and P. P. Sullivan, 1999: Large-eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56, 39633984.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2013: The atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst.,5, 146–172, doi:10.1002/jame.20015.

  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59, 19171942.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2008: Cloud parametrization. Proc. ECMWF Seminar on Parametrization of Subgrid Physical Processes, Shinfield Park, United Kingdom, ECMWF, 27–62.

  • Wan, H., and Coauthors, 2013: The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids—Part 1: Formulation and performance of the baseline version. Geosci. Model. Dev. Discuss., 6, 59119, doi:10.5194/gmdd-6-59-2013.

    • Search Google Scholar
    • Export Citation
  • Weber, T., J. Quaas, and P. Räisänen, 2011: Evaluation of the statistical cloud scheme in the ECHAM5 model using satellite data. Quart. J. Roy. Meteor. Soc., 137, 2079–2091, doi:10.1002/qj.887.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 283 116 7
PDF Downloads 149 49 5