Ozone Loss and Recovery and the Preconditioning of Upward-Propagating Planetary Wave Activity

John R. Albers Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by John R. Albers in
Current site
Google Scholar
PubMed
Close
and
Terrence R. Nathan Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by Terrence R. Nathan in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A mechanistic chemistry–dynamical model is used to evaluate the relative importance of radiative, photochemical, and dynamical feedbacks in communicating changes in lower-stratospheric ozone to the circulation of the stratosphere and lower mesosphere. Consistent with observations and past modeling studies of Northern Hemisphere late winter and early spring, high-latitude radiative cooling due to lower-stratospheric ozone depletion causes an increase in the modeled meridional temperature gradient, an increase in the strength of the polar vortex, and a decrease in vertical wave propagation in the lower stratosphere. Moreover, it is shown that, as planetary waves pass through the ozone loss region, dynamical feedbacks precondition the wave, causing a large increase in wave amplitude. The wave amplification causes an increase in planetary wave drag, an increase in residual circulation downwelling, and a weaker polar vortex in the upper stratosphere and lower mesosphere. The dynamical feedbacks responsible for the wave amplification are diagnosed using an ozone-modified refractive index; the results explain recent chemistry–coupled climate model simulations that suggest a link between ozone depletion and increased polar downwelling. The effects of future ozone recovery are also examined and the results provide guidance for researchers attempting to diagnose and predict how stratospheric climate will respond specifically to ozone loss and recovery versus other climate forcings including increasing greenhouse gas abundances and changing sea surface temperatures.

Corresponding author address: John R. Albers, Dept. of Land, Air, and Water Resources, Hoagland Hall, University of California, Davis, Davis, CA 95616-8627. E-mail: albersjohn@hotmail.com

Abstract

A mechanistic chemistry–dynamical model is used to evaluate the relative importance of radiative, photochemical, and dynamical feedbacks in communicating changes in lower-stratospheric ozone to the circulation of the stratosphere and lower mesosphere. Consistent with observations and past modeling studies of Northern Hemisphere late winter and early spring, high-latitude radiative cooling due to lower-stratospheric ozone depletion causes an increase in the modeled meridional temperature gradient, an increase in the strength of the polar vortex, and a decrease in vertical wave propagation in the lower stratosphere. Moreover, it is shown that, as planetary waves pass through the ozone loss region, dynamical feedbacks precondition the wave, causing a large increase in wave amplitude. The wave amplification causes an increase in planetary wave drag, an increase in residual circulation downwelling, and a weaker polar vortex in the upper stratosphere and lower mesosphere. The dynamical feedbacks responsible for the wave amplification are diagnosed using an ozone-modified refractive index; the results explain recent chemistry–coupled climate model simulations that suggest a link between ozone depletion and increased polar downwelling. The effects of future ozone recovery are also examined and the results provide guidance for researchers attempting to diagnose and predict how stratospheric climate will respond specifically to ozone loss and recovery versus other climate forcings including increasing greenhouse gas abundances and changing sea surface temperatures.

Corresponding author address: John R. Albers, Dept. of Land, Air, and Water Resources, Hoagland Hall, University of California, Davis, Davis, CA 95616-8627. E-mail: albersjohn@hotmail.com
Save
  • Albers, J. R., and T. R. Nathan, 2012: Pathways for communicating the effects of stratospheric ozone to the polar vortex: Role of zonally asymmetric ozone. J. Atmos. Sci., 69, 785801.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Austin, J., J. Wilson, and H. Vömel, 2007: Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry–climate model simulations. J. Atmos. Sci., 64, 905921.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M., and Coauthors, 2007: Climate–ozone connections. Scientific assessment of ozone depletion: 2006, Global Ozone Research and Monitoring Project Rep. 50, WMO, 5.1–5.49.

  • Barnett, J. J., J. T. Houghton, and J. A. Pyle, 1975: The temperature dependence of the ozone concentration near the stratopause. Quart. J. Roy. Meteor. Soc., 101, 245257.

    • Search Google Scholar
    • Export Citation
  • Birner, T., and H. Bönisch, 2011: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys., 11, 817827.

    • Search Google Scholar
    • Export Citation
  • Bönisch, H., A. Engel, T. Birner, P. Hoor, D. W. Tarasick, and E. A. Ray, 2011: On the structural changes in the Brewer–Dobson circulation after 2000. Atmos. Chem. Phys., 11, 39373948.

    • Search Google Scholar
    • Export Citation
  • Brasseur, G. P., and M. A. Hitchman, 1988: Stratospheric response to trace gas perturbations: Changes in ozone and temperature distributions. Science, 240, 634637.

    • Search Google Scholar
    • Export Citation
  • Brasseur, G. P., and S. Solomon, 2005: Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere. Springer, 644 pp.

  • Butchart, N., and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799802.

    • Search Google Scholar
    • Export Citation
  • Calvo, N., and R. R. Garcia, 2009: Wave forcing of the tropical upwelling in the lower stratosphere under increasing concentrations of greenhouse gases. J. Atmos. Sci., 66, 31843196.

    • Search Google Scholar
    • Export Citation
  • Charney, J., and P. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109.

    • Search Google Scholar
    • Export Citation
  • Coy, L., E. R. Nash, and P. A. Newman, 1997: Meteorology of the polar vortex: Spring 1997. Geophys. Res. Lett., 24, 26932696.

  • Craig, C. A., and G. Ohring, 1958: The temperature dependence of ozone radiational heating rates in the vicinity of the mesopeak. J. Meteor., 15, 5962.

    • Search Google Scholar
    • Export Citation
  • Eichelberger, S. J., and D. L. Hartmann, 2005: Changes in the strength of the Brewer-Dobson circulation in a simple AGCM. Geophys. Res. Lett., 32, L15807, doi:10.1029/2005GL022924.

    • Search Google Scholar
    • Export Citation
  • Engel, A., and Coauthors, 2009: Age of stratospheric air unchanged within uncertainties over the past 30 years. Nat. Geosci., 2, 2831.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 27312739.

    • Search Google Scholar
    • Export Citation
  • Haigh, J., and J. Pyle, 1982: Ozone perturbation experiments in a two-dimensional circulation model. Quart. J. Roy. Meteor. Soc., 108, 551574.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 535 pp.

  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403439.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and K.-K. Tung, 2003: Possible ozone-induced long-term changes in planetary wave activity in late winter. J. Climate, 16, 30273038.

    • Search Google Scholar
    • Export Citation
  • Jin, J., and Coauthors, 2006: Severe arctic ozone loss in the winter 2004/2005: Observations from ACE-FTS. Geophys. Res. Lett.,33, L15801, doi:10.1029/2006GL026752.

  • Keating, G., L. Chiou, and N. Hsu, 1996: Improved ozone reference models for the COSPAR international reference atmosphere. Adv. Space Research,18, 11–58.

  • Li, F., R. S. Stolarski, and P. A. Newman, 2009: Stratospheric ozone in the post-CFC era. Atmos. Chem. Phys., 9, 22072213.

  • Lindzen, R., and R. Goody, 1965: Radiative and photochemical processes in mesospheric dynamics. Part I: Models for radiative and photochemical processes. J. Atmos. Sci., 22, 341348.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and Coauthors, 2011: Unprecedented Arctic ozone loss in 2011. Nature, 478, 469475.

  • Manzini, E., B. Steil, C. Brühl, M. A. Giorgetta, and K. Krüger, 2003: A new interactive chemistry-climate model: 2. Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling. J. Geophys. Res., 108, 4429, doi:10.1029/2002JD002977.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., and T. G. Shepherd, 2009: Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes. J. Climate, 22, 15161540.

    • Search Google Scholar
    • Export Citation
  • Metz, B., and Coauthors, Eds., 2005: Safeguarding the ozone layer and the global climate system: Issues related to hydrofluorocarbons and perfluorocarbons. Cambridge University Press, 488 pp.

  • Nathan, T. R., and L. Li, 1991: Linear stability of free planetary waves in the presence of radiative–photochemical feedbacks. J. Atmos. Sci., 48, 18371855.

    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., and E. C. Cordero, 2007: An ozone-modified refractive index for vertically propagating planetary waves. J. Geophys. Res., 112, D02105, doi:10.1029/2006JD007357.

    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., J. R. Albers, and E. C. Cordero, 2011: Role of wave–mean flow interaction in sun–climate connections: Historical overview and some new interpretations and results. J. Atmos. Sol.-Terr. Phys., 73, 15941605.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., E. R. Nash, and J. E. Rosenfield, 2001: What controls the temperature of the Arctic stratosphere during the spring? J. Geophys. Res., 106 (D17), 19 99920 010.

    • Search Google Scholar
    • Export Citation
  • Oman, L., D. W. Waugh, S. Pawson, R. S. Stolarski, and P. A. Newman, 2009: On the influence of anthropogenic forcings on changes in the stratospheric mean age. J. Geophys. Res., 114, D03105, doi:10.1029/2008JD010378.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., and B. Naujokat, 1999: The cold winters of the middle 1990's in the northern lower stratosphere. J. Geophys. Res., 104, 14 20914 222.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 793809.

  • Ramaswamy, V., and Coauthors, 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39, 71122.

  • Randel, W. J., and F. Wu, 1999: Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J. Climate, 12, 14671479.

    • Search Google Scholar
    • Export Citation
  • Rex, M., and Coauthors, 2006: Arctic winter 2005: Implications for stratospheric ozone loss and climate change. Geophys. Res. Lett., 33, L23808, doi:10.1029/2006GL026731.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., 1995: Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100, 51735191.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2007: Transport in the middle atmosphere. J. Meteor. Soc. Japan, 85B, 165191.

  • Shepherd, T. G., 2008: Dynamics, stratospheric ozone, and climate change. Atmos.–Ocean, 46, 117138.

  • Shepherd, T. G., and A. I. Jonsson, 2008: On the attribution of stratospheric ozone and temperature changes to changes in ozone-depleting substances and well-mixed greenhouse gases. Atmos. Chem. Phys. Discuss., 7, 12 32712 347.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and C. McLandress, 2011: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci., 68, 784797.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., G. A. Schmidt, R. L. Miller, and D. Rind, 2001: Northern Hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing. J. Geophys. Res., 106, 71937210.

    • Search Google Scholar
    • Export Citation
  • Smith, A. K., R. R. Garcia, D. R. Marsh, D. E. Kinnison, and J. H. Richter, 2010: Simulations of the response of mesospheric circulation and temperature to the Antarctic ozone hole. Geophys. Res. Lett., 37, L22803, doi:10.1029/2010GL045255.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37, 275316.

  • Thompson, D. W. J., and S. Solomon, 2009: Understanding recent stratospheric climate change. J. Climate, 22, 19341943.

  • Tilmes, S., R. Müller, A. Engel, M. Rex, and J. M. Russel, 2006: Chemical ozone loss in the Arctic and Antarctic stratosphere between 1992 and 2005. Geophys. Res. Lett., 33, L20812, doi:10.1029/2006GL026925.

    • Search Google Scholar
    • Export Citation
  • WMO, 2011: Scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project Rep. 52, WMO, 516 pp.

  • Zhou, T., M. A. Geller, and W. Lin, 2012: An observational study on the latitudes where wave forcing drives Brewer–Dobson upwelling. J. Atmos. Sci., 69, 19161935.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 721 470 93
PDF Downloads 185 46 6