Tracer Dispersion in the Turbulent Convective Layer

Alex Skvortsov Defence Science and Technology Organisation, Fishermans Bend, Victoria, Australia

Search for other papers by Alex Skvortsov in
Current site
Google Scholar
PubMed
Close
,
Milan Jamriska Defence Science and Technology Organisation, Fishermans Bend, Victoria, Australia

Search for other papers by Milan Jamriska in
Current site
Google Scholar
PubMed
Close
, and
Timothy C. DuBois Defence Science and Technology Organisation, Fishermans Bend, Victoria, Australia

Search for other papers by Timothy C. DuBois in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Experimental results for passive tracer dispersion in the turbulent surface layer under convective conditions are presented. In this case, the dispersion of tracer particles is determined by the interplay of two mechanisms: buoyancy and advection. In the atmospheric surface layer under unstable stratification the buoyancy mechanism dominates when the distance from the ground is greater than the Monin–Obukhov length, resulting in a different exponent in the scaling law for relative separation of Lagrangian particles (a deviation from the celebrated Richardson's law). This conclusion is supported by atmospheric observations. Exit-time statistics and a probability density function of concentration increments derived from a previously published experimental dataset demonstrate a noticeable difference between tracer dispersion in the convective and neutrally stratified surface layers.

Corresponding author address: Alex Skvortsov, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, VIC 3207, Australia. E-mail: alex.skvortsov@dsto.defence.gov.au

Abstract

Experimental results for passive tracer dispersion in the turbulent surface layer under convective conditions are presented. In this case, the dispersion of tracer particles is determined by the interplay of two mechanisms: buoyancy and advection. In the atmospheric surface layer under unstable stratification the buoyancy mechanism dominates when the distance from the ground is greater than the Monin–Obukhov length, resulting in a different exponent in the scaling law for relative separation of Lagrangian particles (a deviation from the celebrated Richardson's law). This conclusion is supported by atmospheric observations. Exit-time statistics and a probability density function of concentration increments derived from a previously published experimental dataset demonstrate a noticeable difference between tracer dispersion in the convective and neutrally stratified surface layers.

Corresponding author address: Alex Skvortsov, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, VIC 3207, Australia. E-mail: alex.skvortsov@dsto.defence.gov.au
Save
  • Aivalis, K. G., K. R. Sreenivasan, Y. Tsuji, J. C. Klewicki, and C. A. Biltoft, 2002: Temperature structure functions for air flow over moderately heated ground. Phys. Fluids, 14, 24392446, doi:10.1063/1.1485079.

    • Search Google Scholar
    • Export Citation
  • Antonelli, M., A. Mazzino, and U. Rizza, 2003: Statistics of temperature fluctuations in a buoyancy-dominated boundary layer flow simulated by a large eddy simulation model. J. Atmos. Sci., 60, 215224.

    • Search Google Scholar
    • Export Citation
  • Antonelli, M., M. M. Afonso, A. Mazzino, and U. Rizza, 2005: Structure of temperature fluctuations in turbulent convective boundary layers. J. Turbul., 6 (35), 3569.

    • Search Google Scholar
    • Export Citation
  • Antonelli, M., A. Lanotte, and A. Mazzino, 2007: Anisotropies and universality of buoyancy-dominated turbulent fluctuations: A large-eddy simulation study. J. Atmos. Sci., 64, 26422656.

    • Search Google Scholar
    • Export Citation
  • Aref, H., 1995: Chaos Applied to Fluid Mixing. Pergamon Press, 370 pp.

  • Biferale, L., M. Cencini, A. Lanotte, D. Vergni, and A. Vulpiani, 2001: Inverse statistics of smooth signals: The case of two dimensional turbulence. Phys. Rev. Lett.,87, 124501, doi:10.1103/PhysRevLett.87.124501.

  • Biferale, L., F. Mantovani, M. Sbragaglia, A. Scagliarini, F. Toschi, and R. Tripiccione, 2011: Second order closure for stratified convection: Bulk region and overshooting. J. Phys.: Conf. Ser.,318, 042018, doi:10.1088/1742-6596/318/4/042018.

  • Bisignanesi, V., and M. Borgas, 2007: Models for integrated pest management with chemicals in atmospheric surface layers. Ecol. Modell., 201, 210, doi:10.1016/j.ecolmodel.2006.07.040.

    • Search Google Scholar
    • Export Citation
  • Bistagnino, A., G. Boffetta, and A. Mazzino, 2007: Lagrangian velocity structure functions in Bolgiano turbulence. Phys. Fluids,19, 011703, doi:10.1063/1.2432154.

  • Boffetta, G., A. Mazzino, and A. Vulpiani, 2008: Twenty-five years of multifractals in fully developed turbulence: A tribute to Giovanni Paladin. J. Phys.,41A, 363001, doi:10.1088/1751-8113/41/36/363001.

  • Bourgoin, M., N. T. Ouellette, H. Xu, J. Berg, and E. Bodenschatz, 2006: The role of pair dispersion in turbulent flow. Science, 311, 835838, doi:10.1126/science.1121726.

    • Search Google Scholar
    • Export Citation
  • Calzavarini, E., F. Toschi, and R. Tripiccione, 2002: Evidences of Bolgiano-Obhukhov scaling in three-dimensional Rayleigh-Bénard convection. Phys. Rev.,66E, 016304, doi:10.1103/PhysRevE.66.016304.

  • Celani, A., M. Cencini, A. Mazzino, and M. Vergassola, 2004: Active and passive fields face to face. New J. Phys., 6, 72, doi:10.1088/1367-2630/6/1/072.

    • Search Google Scholar
    • Export Citation
  • Celani, A., M. Cencini, M. Vergassola, E. Villermaux, and D. Vincenzi, 2005: Shear effects on passive scalar spectra. J. Fluid Mech., 523, 99108, doi:10.1017/S0022112004002332.

    • Search Google Scholar
    • Export Citation
  • Dosio, A., and J. Vilà-Guerau de Arellano, 2006: Statistics of absolute and relative dispersion in the atmospheric convective boundary layer: A large-eddy simulation study. J. Atmos. Sci., 63, 12531272.

    • Search Google Scholar
    • Export Citation
  • Dosio, A., J. Vilà-Guerau de Arellano, A. A. M. Holtslag, and P. J. H. Builtjes, 2003: Dispersion of a passive tracer in buoyancy- and shear-driven boundary layers. J. Appl. Meteor., 42, 11161130.

    • Search Google Scholar
    • Export Citation
  • Dosio, A., J. V.-G. de Arelliano, and A. A. M. Holtslag, 2005: Relating Eulerian and Lagrangian statistics for the turbulent dispersion in the atmospheric convective boundary layer. J. Atmos. Sci., 62, 11751191.

    • Search Google Scholar
    • Export Citation
  • Dycor, 2013: CFLAPS: Fluorescent Aerosol Particle System. [Available online at http://www.dycor.com/Products/DefenseSecurity/CBRNESurveillanceSolutions/CFLAPS.aspx.]

  • Falkovich, G., K. Gawedzki, and M. Vergassola, 2001: Particles and fields in fluid turbulence. Rev. Mod. Phys., 73, 913975, doi:10.1103/RevModPhys.73.913.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., 2004: Dispersion of passive tracer in the atmospheric convective boundary layer with wind shears: A review of laboratory and numerical model studies. Meteor. Atmos. Phys., 87, 321, doi:10.1007/s00703-003-0058-3.

    • Search Google Scholar
    • Export Citation
  • Franzese, P., and M. S. Borgas, 2002: A simple relative dispersion model for concentration fluctuations in contaminant clouds. J. Appl. Meteor., 41, 11011111.

    • Search Google Scholar
    • Export Citation
  • Franzese, P., A. K. Luhar, and M. S. Borgas, 1999: An efficient Lagrangian stochastic model of vertical dispersion in the convective boundary layer. Atmos. Environ., 33, 23372345, doi:10.1016/S1352-2310(98)00432-4.

    • Search Google Scholar
    • Export Citation
  • Frisch, U., 1996: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 312 pp.

  • Garratt, J. R., 1994: The Atmospheric Boundary Layer. Cambridge University Press, 336 pp.

  • Gioia, G., G. Lacorata, E. P. M. Filho, A. Mazzino, and U. Rizza, 2004: The Richardson's law in large-eddy simulations of boundary-layer flows. Bound.-Layer Meteor., 113, 187199, doi:10.1023/B:BOUN.0000039373.45669.68.

    • Search Google Scholar
    • Export Citation
  • Gunatilaka, A., A. Skvortsov, and R. Gailis, 2012: High fidelity simulation of hazardous plume concentration time series based on models of turbulent dispersion. Proc. 15th Int. Conf. on Information Fusion, Singapore, ISIF, 26302637.

  • He, X., G. He, and P. Tong, 2010: Small-scale turbulent fluctuations beyond Taylor's frozen-flow hypothesis. Phys. Rev., 81, 065303, doi:10.1103/PhysRevE.81.065303.

    • Search Google Scholar
    • Export Citation
  • Higgins, C. W., M. Froidevaux, V. Simeonov, N. Vercauteren, C. Barry, and M. Parlange, 2012: The effect of scale on the applicability of Taylor's frozen turbulence hypothesis in the atmospheric boundary layer. Bound.-Layer Meteor., 143, 379391.

    • Search Google Scholar
    • Export Citation
  • Huang, J., X. Lee, and E. G. Patton, 2009: Dissimilarity of scalar transport in the convective boundary layer in inhomogeneous landscapes. Bound.-Layer Meteor., 130, 327345, doi:10.1007/s10546-009-9356-8.

    • Search Google Scholar
    • Export Citation
  • Jamriska, M., T. C. DuBois, and A. Skvortsov, 2012: Statistical characterisation of bio-aerosol background in an urban environment. Atmos. Environ., 54, 439448, doi:10.1016/j.atmosenv.2012.02.049.

    • Search Google Scholar
    • Export Citation
  • Klose, M., and Y. Shao, 2012: Stochastic parameterization of dust emission and application to convective atmospheric conditions. Atmos. Chem. Phys. Discuss., 12, 32633293, doi:10.5194/acpd-12-3263-2012.

    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1968: Small-scale structure of a scalar field convected by turbulence. Phys. Fluids, 11, 945954, doi:10.1063/1.1692063.

    • Search Google Scholar
    • Export Citation
  • Kunnen, R., H. Clercx, B. J. Geurts, L. J. A. van Bokhoven, R. A. D. Akkermans, and R. Verzicco, 2008: Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh-Bénard convection. Phys. Rev.,77E, 016302, doi:10.1103/PhysRevE.77.016302.

  • Lanotte, A. S., and I. Mazzitelli, 2013: Scalar turbulence in convective boundary layers by changing the entrainment flux. J. Atmos. Sci.,70, 248–265.

  • Lohse, D., and K.-Q. Xia, 2010: Small-scale properties of turbulent Rayleigh-Bénard convection. Annu. Rev. Fluid Mech., 42, 335364, doi:10.1146/annurev.fluid.010908.165152.

    • Search Google Scholar
    • Export Citation
  • Luhar, A. K., M. F. Hibberd, and M. S. Borgas, 2000: A skewed meandering plume model for concentration statistics in the convective boundary layer. Atmos. Environ., 34, 35993616, doi:10.1016/S1352-2310(00)00111-4.

    • Search Google Scholar
    • Export Citation
  • Mazzitelli, I., and A. S. Lanotte, 2012: Active and passive scalar intermittent statistics in turbulent atmospheric convection. Physica D, 241, 251259, doi:10.1016/j.physd.2011.07.009.

    • Search Google Scholar
    • Export Citation
  • McNaughton, K. G., R. J. Clement, and J. B. Moncrieff, 2007: Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer. Nonlinear Processes Geophys., 14, 257271, doi:10.5194/npg-14-257-2007.

    • Search Google Scholar
    • Export Citation
  • Mendis, C., A. Skvortsov, A. Gunatilaka, and S. Karunasekera, 2012: Performance of wireless chemical sensor network with dynamic collaboration. IEEE Sens. J., 12, 321, doi:10.1109/JSEN.2012.2198349.

    • Search Google Scholar
    • Export Citation
  • Mikkelsen, T., H. Jørgensen, M. Nielsen, and S. Ott, 2002: Similarity scaling of surface-released smoke plumes. Bound.-Layer Meteor., 105, 483505, doi:10.1023/A:1020380820526.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Yaglom, 1975a: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 1. MIT Press, 782 pp.

  • Monin, A. S., and A. M. Yaglom, 1975b: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 2. MIT Press, 896 pp.

  • Ottino, J. M., 1989: The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge Texts in Applied Mathematics, Vol. 3, Cambridge University Press, 396 pp.

  • Salazar, J., and L. Collins, 2009: Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech., 41, 405432, doi:10.1146/annurev.fluid.40.111406.102224.

    • Search Google Scholar
    • Export Citation
  • Schmitt, F., 2005: Explicit predictability and dispersion scaling exponents in fully developed turbulence. Phys. Lett., 342A, 448458, doi:10.1016/j.physleta.2005.05.088.

    • Search Google Scholar
    • Export Citation
  • Shraiman, B., and E. Siggia, 2000: Scalar turbulence. Nature, 405, 639646, doi:10.1038/35015000.

  • Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248.

    • Search Google Scholar
    • Export Citation
  • Skvortsov, A., M. Jamriska, and T. C. DuBois, 2010: Scaling laws of passive tracer dispersion in the turbulent surface layer. Phys. Rev.,82E, 056304, doi:10.1103/PhysRevE.82.056304.

  • Sofiev, M., V. Sofieva, T. Elperin, N. Kleeorin, I. Rogachevskii, and S. S. Zilitinkevich, 2009: Turbulent diffusion and turbulent thermal diffusion of aerosols in stratified atmospheric flows. J. Geophys. Res.,114, D18209, doi:10.1029/2009JD011765.

  • Sreenivasan, K. R., and J. Schumacher, 2010: Lagrangian views on turbulent mixing of passive scalars. Philos. Trans. Roy. Soc., A368, 15611577, doi:10.1098/rsta.2009.0140.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., C. H. Moeng, S. D. M. B. Stevens, and D. H. Lenschow, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 30423064.

    • Search Google Scholar
    • Export Citation
  • Sykes, R., 1988: Concentration fluctuations in dispersing plumes. Lectures on Air Pollution Modeling, A. Venkatram and J. C. Wyngaard, Eds., Amer. Meteor. Soc., 325–356.

  • Toschi, F., and E. Bodenschatz, 2008: Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech., 41, 375404, doi:10.1146/annurev.fluid.010908.165210.

    • Search Google Scholar
    • Export Citation
  • Van Ulden, A. P., and A. A. M. Holtslag, 1985: Estimation of atmospheric boundary layer parameters for diffusion applications. J. Climate Appl. Meteor., 24, 11961207.

    • Search Google Scholar
    • Export Citation
  • Venkatram, A., 2004: The role of meteorological inputs in estimating dispersion from surface releases. Atmos. Environ., 38, 24392446, doi:10.1016/j.atmosenv.2004.02.005.

    • Search Google Scholar
    • Export Citation
  • Weil, J. C., R. I. Sykes, and A. Venkatram, 1992: Evaluating air-quality models: Review and outlook. J. Appl. Meteor., 31, 11211145.

  • Weil, J. C., P. P. Sullivan, E. G. Patton, and C.-H. Moeng, 2012: Statistical variability of dispersion in the convective boundary layer: Ensembles of simulations and observations. Bound.-Layer Meteor., 145, 185210, doi:10.1007/s10546-012-9704-y.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 406 pp.

  • Wyngaard, J. C., and S. F. Clifford, 1977: Taylor's hypothesis and high-frequency turbulence spectra. J. Atmos. Sci., 34, 922929.

  • Yee, E., and R. Chan, 1997: Probability density function of concentration increments in a surface plume dispersing in the atmospheric boundary layer. Phys. Lett., 227A, 340348, doi:10.1016/S0375-9601(97)00031-5.

    • Search Google Scholar
    • Export Citation
  • Yee, E., and A. Skvortsov, 2011: Scalar fluctuations from a point source in a turbulent boundary layer. Phys. Rev.,84E, 036306, doi:10.1103/PhysRevE.84.036306.

  • Zhou, Q., C.-M. Li, Z.-M. Lu, and Y.-L. Liu, 2011: Experimental investigation of longitudinal space–time correlations of the velocity field in turbulent Rayleigh–Bénard convection. J. Fluid Mech., 683, 94111.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 649 478 158
PDF Downloads 150 36 5