Evaluation of Modeled Stratocumulus-Capped Boundary Layer Turbulence with Shipborne Data

Takanobu Yamaguchi Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Takanobu Yamaguchi in
Current site
Google Scholar
PubMed
Close
,
W. Alan Brewer NOAA/Earth System Research Laboratory, Boulder Colorado

Search for other papers by W. Alan Brewer in
Current site
Google Scholar
PubMed
Close
, and
Graham Feingold NOAA/Earth System Research Laboratory, Boulder Colorado

Search for other papers by Graham Feingold in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Numerically modeled turbulence simulated by the Advanced Research Weather Research and Forecasting Model (ARW) is evaluated with turbulence measurements from NOAA’s high-resolution Doppler lidar on the NOAA Research Vessel Ronald H. Brown during the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study—Regional Experiment (VOCALS-Rex) field program. A nonprecipitating nocturnal marine stratocumulus case is examined, and a nudging technique is applied to allow turbulence to spin up and come into a statistically stationary state with the initial observed cloud field. This “stationary” state is then used as the initial condition for the subsequent free-running simulation. The comparison shows that the modeled turbulence is consistently weaker than that observed. For the same resolution, the turbulence becomes stronger, especially for the horizontal component, as the length of the horizontal domain increases from 6.4 to 25.6 km. Analysis of the power spectral density shows that, even for the largest domain, the horizontal component of the turbulence is limited by the upper limit of the domain size; supporting evidence from past studies is provided. Results suggest that convergence is expected for (i) energy spectra of turbulence with a sufficiently large domain and (ii) liquid water path with an adequately large domain and fine resolution. Additional tests are performed by changing momentum advection and turning off subgrid-scale diffusion. These exhibit more significant changes in turbulence characteristics compared to the sensitivity to domain size and resolution, suggesting that the model behavior is essentially established by the configuration of the model dynamics and physics and that the simulation only gradually improves when domain size and resolution are increased.

Corresponding author address: Takanobu Yamaguchi, NOAA/Earth System Research Laboratory, Chemical Science Division (R/CSD2), 325 Broadway, Boulder, CO 80305. E-mail: tak.yamaguchi@noaa.gov

Abstract

Numerically modeled turbulence simulated by the Advanced Research Weather Research and Forecasting Model (ARW) is evaluated with turbulence measurements from NOAA’s high-resolution Doppler lidar on the NOAA Research Vessel Ronald H. Brown during the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study—Regional Experiment (VOCALS-Rex) field program. A nonprecipitating nocturnal marine stratocumulus case is examined, and a nudging technique is applied to allow turbulence to spin up and come into a statistically stationary state with the initial observed cloud field. This “stationary” state is then used as the initial condition for the subsequent free-running simulation. The comparison shows that the modeled turbulence is consistently weaker than that observed. For the same resolution, the turbulence becomes stronger, especially for the horizontal component, as the length of the horizontal domain increases from 6.4 to 25.6 km. Analysis of the power spectral density shows that, even for the largest domain, the horizontal component of the turbulence is limited by the upper limit of the domain size; supporting evidence from past studies is provided. Results suggest that convergence is expected for (i) energy spectra of turbulence with a sufficiently large domain and (ii) liquid water path with an adequately large domain and fine resolution. Additional tests are performed by changing momentum advection and turning off subgrid-scale diffusion. These exhibit more significant changes in turbulence characteristics compared to the sensitivity to domain size and resolution, suggesting that the model behavior is essentially established by the configuration of the model dynamics and physics and that the simulation only gradually improves when domain size and resolution are increased.

Corresponding author address: Takanobu Yamaguchi, NOAA/Earth System Research Laboratory, Chemical Science Division (R/CSD2), 325 Broadway, Boulder, CO 80305. E-mail: tak.yamaguchi@noaa.gov
Save
  • Ackerman, A. S., and Coauthors, 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110.

    • Search Google Scholar
    • Export Citation
  • Berner, A. H., C. S. Bretherton, and R. Wood, 2011: Large-eddy simulation of mesoscale dynamics and entrainment around a pocket of open cells observed in VOCALS-REx RF06. Atmos. Chem. Phys., 11, 10 52510 540.

    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., and Coauthors, 2013: Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison. J. Adv. Model. Earth Syst.,5, 234–258, doi:10.1002/jame.20025.

  • Bougeault, P., 1985: The diurnal cycle of the marine stratocumulus layer: A higher-order model study. J. Atmos. Sci., 42, 28262843.

  • Bretherton, C. S., S. K. Kruger, M. C. Wyant, P. Bechtold, E. V. Meijgaard, B. Stevens, and J. Teixeira, 1999a: A GCSS boundary-layer cloud model intercomparison study of the first ASTEX Lagrangian experiment. Bound.-Layer Meteor., 93, 341380.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 1999b: An intercomparison of radiatively driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models. Quart. J. Roy. Meteor. Soc., 125, 391423.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., and Coauthors, 2002: Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quart. J. Roy. Meteor. Soc., 128, 10751093.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416.

    • Search Google Scholar
    • Export Citation
  • Chen, C., and W. R. Cotton, 1987: The physics of the marine stratocumulus-capped mixed layer. J. Atmos. Sci., 44, 29512977.

  • Cheng, A., K.-M. Xu, and B. Stevens, 2010: Effects of resolution on the simulation of boundary-layer clouds and the partition of kinetic energy to subgrid scales. J. Adv. Model. Earth Syst.,2, 21 pp, doi:10.3894/JAMES.2010.2.3.

  • Clark, T. L., 1973: Numerical modeling of the dynamics and microphysics of warm cumulus convection. J. Atmos. Sci., 30, 857878.

  • Comstock, K. K., R. Wood, S. E. Yuter, and C. S. Bretherton, 2004: Reflectivity and rain rate in and below drizzling stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 28912918.

    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, W. Wiscombe, and R. Cahalan, 1996: Scale invariance of liquid water distributions in marine stratocumulus. Part I: Spectral properties and stationarity issues. J. Atmos. Sci., 53, 15381558.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91115.

  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527.

  • de Roode, S. R., P. G. Duynkerke, and H. J. J. Jonker, 2004: Large-eddy simulation: How large is large enough? J. Atmos. Sci., 61, 403421.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., and S.-P. Xie, 2008: The tropical eastern pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean–atmosphere general circulation models. J. Climate, 21, 25732590.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., C. W. Fairall, D. E. Wolfe, L. Bariteau, and P. Zuidema, 2010: Surface flux observations on the southeastern tropical pacific ocean and attribution of SST errors in coupled ocean–atmosphere models. J. Climate, 23, 41524174.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., 1998: Dynamics of cloudy boundary layers. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Sciences, 199–218.

  • Duynkerke, P. G., and Coauthors, 2004: Observations and numerical simulations of the diurnal cycle of the EUROCS stratocumulus case. Quart. J. Roy. Meteor. Soc., 130, 32693296.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., R. L. Walko, B. Stevens, and W. R. Cotton, 1998: Simulations of marine stratocumulus using a new microphysical parameterization scheme. Atmos. Res., 47–48, 505528.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., I. Koren, H. Wang, H. Xue, and W. A. Brewer, 2010: Precipitation-generated oscillations in open cellular cloud fields. Nature, 466, 849852.

    • Search Google Scholar
    • Export Citation
  • Fiedler, F., and H. A. Panofsky, 1970: Atmospheric scales and spectral gaps. Bull. Amer. Meteor. Soc., 51, 11141120.

  • Gage, K. S., 1979: Evidence for a k−5/3 law inertial range in mesoscale two-dimensional turbulence. J. Atmos. Sci., 36, 19501954.

  • Golaz, J.-C., S. Wang, J. Doyle, and J. Schmidt, 2005: COAMPS-LES: Model evaluation and analysis of second-and third-moment vertical velocity budgets. Bound.-Layer Meteor., 116, 487517.

    • Search Google Scholar
    • Export Citation
  • Guo, H., L. Yangang, H. D. Peter, I. S. Gunnar, and T. Wei-Kuo, 2008: Characteristics of vertical velocity in marine stratocumulus: Comparison of large eddy simulations with observations. Environ. Res. Lett., 3, 045020, doi:10.1088/1748-9326/3/4/045020.

    • Search Google Scholar
    • Export Citation
  • Henderson, P. W., and R. Pincus, 2009: Multiyear evaluations of a cloud model using ARM data. J. Atmos. Sci., 66, 29252936.

  • Jonker, H. J. J., P. G. Duynkerke, and J. W. M. Cuijpers, 1999: Mesoscale fluctuations in scalars generated by boundary layer convection. J. Atmos. Sci., 56, 801808.

    • Search Google Scholar
    • Export Citation
  • Kazil, J., H. Wang, G. Feingold, A. D. Clarke, J. R. Snider, and A. R. Bandy, 2011: Modeling chemical and aerosol processes in the transition from closed to open cells during VOCALS-REx. Atmos. Chem. Phys., 11, 74917514.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 28972913.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D., M. Lothon, S. Mayor, P. Sullivan, and G. Canut, 2012: A comparison of higher-order vertical velocity moments in the convective boundary layer from lidar with in situ measurements and large-eddy simulation. Bound.-Layer Meteor., 143, 107123.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309.

  • Lilly, D. K., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40, 749761.

  • Lilly, D. K., and E. L. Petersen, 1983: Aircraft measurements of atmospheric kinetic energy spectra. Tellus, 35A, 379382.

  • Mason, P. J., 1989: Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci., 46, 14921516.

  • Matheou, G., D. Chung, L. Nuijens, B. Stevens, and J. Teixeira, 2011: On the fidelity of large-eddy simulation of shallow precipitating cumulus convection. Mon. Wea. Rev., 139, 29182939.

    • Search Google Scholar
    • Export Citation
  • Mayor, S. D., G. J. Tripoli, and E. W. Eloranta, 2003: Evaluating large-eddy simulations using volume imaging lidar data. Mon. Wea. Rev., 131, 14281452.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., S. E. Yuter, and S. P. de Szoeke, 2012: Thermodynamic and aerosol controls in southeast Pacific stratocumulus. J. Atmos. Sci., 69, 12501266.

    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., 2010: The evaporatively driven cloud-top mixing layer. J. Fluid Mech., 660, 536.

  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1986: Large-eddy simulation of a stratus-topped boundary layer. Part I: Structure and budgets. J. Atmos. Sci., 43, 28862900.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and U. Schumann, 1991: Composite structure of plumes in stratus-topped boundary layers. J. Atmos. Sci., 48, 22802291.

  • Moeng, C.-H., D. H. Lenschow, and D. A. Randall, 1995: Numerical investigations of the roles of radiative and evaporative feedbacks in stratocumulus entrainment and breakup. J. Atmos. Sci., 52, 28692883.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and Coauthors, 1996: Simulation of a stratocumulus-topped planetary boundary layer: Intercomparison among different numerical codes. Bull. Amer. Meteor. Soc., 77, 261278.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., J. Dudhia, J. Klemp, and P. Sullivan, 2007: Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Wea. Rev., 135, 22952311.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., P. P. Sullivan, M. F. Khairoutdinov, and D. A. Randall, 2010: A mixed scheme for subgrid-scale fluxes in cloud-resolving models. J. Atmos. Sci., 67, 36923705.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Moran, K., S. Pezoa, C. Fairall, C. Williams, T. Ayers, A. Brewer, S. P. de Szoeke, and V. Ghate, 2012: A motion-stabilized W-band radar for shipboard observations of marine boundary-layer clouds. Bound.-Layer Meteor., 143, 324.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960.

    • Search Google Scholar
    • Export Citation
  • Nucciarone, J. J., and G. S. Young, 1991: Aircraft measurements of turbulence spectra in the marine stratocumulus-topped boundary layer. J. Atmos. Sci., 48, 23822392.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Q. Shao, and C.-H. Moeng, 1992: A second-order bulk boundary-layer model. J. Atmos. Sci., 49, 19031923.

  • Savic-Jovcic, V., and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65, 15871605.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., 1976: Experiments with Lilly’s cloud-topped mixed layer model. J. Atmos. Sci., 33, 436446.

  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032.

  • Solomon, A., M. D. Shupe, P. O. G. Persson, and H. Morrison, 2011: Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmos. Chem. Phys., 11, 10 12710 148.

    • Search Google Scholar
    • Export Citation
  • Steffen, M., 1990: A simple method for monotonic interpolation in one dimension. Astron. Astrophys., 239, 443450.

  • Stevens, B., and Coauthors, 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58, 18701891.

  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and T. Mauritsen, 2009: Mesoscale variability in the summer arctic boundary layer. Bound.-Layer Meteor., 130, 383406.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., C. Leck, P. O. G. Persson, M. L. Jensen, S. P. Oncley, and A. Targino, 2004: The summertime arctic atmosphere: Meteorological measurements during the Arctic Ocean Experiment 2001. Bull. Amer. Meteor. Soc., 85, 13051321.

    • Search Google Scholar
    • Export Citation
  • Tucker, S. C., C. J. Senff, A. M. Weickmann, W. A. Brewer, R. M. Banta, S. P. Sandberg, D. C. Law, and R. M. Hardesty, 2009: Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J. Atmos. Oceanic Technol., 26, 673688.

    • Search Google Scholar
    • Export Citation
  • Van der Hoven, I., 1957: Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J. Meteor., 14, 160164.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst.,3, M06001, doi:10.1029/2011MS000056.

  • Wang, H., and G. Feingold, 2009a: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci., 66, 32373256.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and G. Feingold, 2009b: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part II: The microphysics and dynamics of the boundary region between open and closed cells. J. Atmos. Sci., 66, 32573275.

    • Search Google Scholar
    • Export Citation
  • Wang, H., W. C. Skamarock, and G. Feingold, 2009: Evaluation of scalar advection schemes in the advanced research WRF model using large-eddy simulations of aerosol–cloud interactions. Mon. Wea. Rev., 137, 25472558.

    • Search Google Scholar
    • Export Citation
  • Wang, S., X. Zheng, and Q. Jiang, 2012: Strongly sheared stratocumulus convection: An observationally based large-eddy simulation study. Atmos. Chem. Phys., 12, 52235235.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low cloud: The importance of mesoscale cellular convection. J. Climate, 19, 17481764.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011: The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and G. Feingold, 2012: Technical note: Large-eddy simulation of cloudy boundary layer with the Advanced Research WRF model. J. Adv. Model. Earth Syst.,4, M09003, doi:10.1029/2012MS000164.

  • Yamaguchi, T., and D. A. Randall, 2012: Cooling of entrained parcels in a large-eddy simulation. J. Atmos. Sci., 69, 11181136.

  • Yamaguchi, T., and G. Feingold, 2013: On the size distribution of cloud holes in stratocumulus and their relationship to cloud-top entrainment. Geophys. Res. Lett., 40, 24502454, doi:10.1002/grl.50442.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., D. A. Randall, and M. F. Khairoutdinov, 2011: Cloud modeling tests of the ULTIMATE-MACHO scalar advection scheme. Mon. Wea. Rev., 139, 32483264.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., 1987: Mixed layer spectra from aircraft measurements. J. Atmos. Sci., 44, 12511256.

  • Zalesak, S. T., 1979: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., 31, 335362.

  • Zuidema, P., E. R. Westwater, C. Fairall, and D. Hazen, 2005: Ship-based liquid water path estimates in marine stratocumulus. J. Geophys. Res., 110, D20206, doi:10.1029/2005JD005833.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 537 330 143
PDF Downloads 152 27 2