Gravity Wave–Fine Structure Interactions. Part I: Influences of Fine Structure Form and Orientation on Flow Evolution and Instability

David C. Fritts GATS Inc., Boulder, Colorado

Search for other papers by David C. Fritts in
Current site
Google Scholar
PubMed
Close
,
Ling Wang GATS Inc., Boulder, Colorado

Search for other papers by Ling Wang in
Current site
Google Scholar
PubMed
Close
, and
Joseph A. Werne NorthWest Research Associates, Boulder, Colorado

Search for other papers by Joseph A. Werne in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Four idealized direct numerical simulations are performed to examine the dynamics arising from the superposition of a monochromatic gravity wave (GW) and sinusoidal linear and rotary fine structure in the velocity field. These simulations are motivated by the ubiquity of such multiscale superpositions throughout the atmosphere. Three simulations explore the effects of linear fine structure alignment along, orthogonal to, and at 45° to the plane of GW propagation. These reveal that fine structure alignment with the GW enables strong wave–wave interactions, strong deformations of the initial flow components, and rapid transitions to local instabilities and turbulence. Increasing departures of fine structure alignment from the GW yield increasingly less efficient wave–wave interactions and weaker or absent local instabilities. The simulation having rotary fine structure velocities yields wave–wave interactions that agree closely with the aligned linear fine structure case. Differences in the aligned GW fields are only seen following the onset of local instabilities, which are delayed by about 1–2 buoyancy periods for rotary fine structure compared to aligned, linear fine structure. In all cases, local instabilities and turbulence primarily accompany strong superposed shears or fluid “intrusions” within the rising, and least statically stable, phase of the GW. For rotary fine structure, local instabilities having preferred streamwise or spanwise orientations often arise independently, depending on the character of the larger-scale flow. Wave–wave interactions play the greatest role in reducing the initial GW amplitude whereas fine structure shears and intrusions are the major source of instability and turbulence energies.

Corresponding author address: D. C. Fritts, GATS Inc./Boulder, 3360 Mitchell Lane, Boulder, CO 80301. E-mail: dave@gats-inc.com

Abstract

Four idealized direct numerical simulations are performed to examine the dynamics arising from the superposition of a monochromatic gravity wave (GW) and sinusoidal linear and rotary fine structure in the velocity field. These simulations are motivated by the ubiquity of such multiscale superpositions throughout the atmosphere. Three simulations explore the effects of linear fine structure alignment along, orthogonal to, and at 45° to the plane of GW propagation. These reveal that fine structure alignment with the GW enables strong wave–wave interactions, strong deformations of the initial flow components, and rapid transitions to local instabilities and turbulence. Increasing departures of fine structure alignment from the GW yield increasingly less efficient wave–wave interactions and weaker or absent local instabilities. The simulation having rotary fine structure velocities yields wave–wave interactions that agree closely with the aligned linear fine structure case. Differences in the aligned GW fields are only seen following the onset of local instabilities, which are delayed by about 1–2 buoyancy periods for rotary fine structure compared to aligned, linear fine structure. In all cases, local instabilities and turbulence primarily accompany strong superposed shears or fluid “intrusions” within the rising, and least statically stable, phase of the GW. For rotary fine structure, local instabilities having preferred streamwise or spanwise orientations often arise independently, depending on the character of the larger-scale flow. Wave–wave interactions play the greatest role in reducing the initial GW amplitude whereas fine structure shears and intrusions are the major source of instability and turbulence energies.

Corresponding author address: D. C. Fritts, GATS Inc./Boulder, 3360 Mitchell Lane, Boulder, CO 80301. E-mail: dave@gats-inc.com
Save
  • Achatz, U., 2005: On the role of optimal perturbations in the instability of monochromatic gravity waves. Phys. Fluids, 17, 094107, doi:10.1063/1.2046709.

    • Search Google Scholar
    • Export Citation
  • Achatz, U., 2007: The primary nonlinear dynamics of modal and nonmodal perturbations of monochromatic inertia–gravity waves. J. Atmos. Sci., 64, 7495.

    • Search Google Scholar
    • Export Citation
  • Achatz, U., and G. Schmitz, 2006a: Shear and static instability of inertia–gravity wave packets: Short-term modal and nonmodal growth. J. Atmos. Sci., 63, 397413.

    • Search Google Scholar
    • Export Citation
  • Achatz, U., and G. Schmitz, 2006b: Optimal growth in inertia–gravity wave packets: Energetics, long-term development, and three-dimensional structure. J. Atmos. Sci., 63, 414434.

    • Search Google Scholar
    • Export Citation
  • Almalkie, S., and S. M. de Bruyn Kops, 2012: Kinetic energy dynamics in forced, homogeneous, and axisymmetric stably stratified turbulence. J. Turbul., 13, N29, doi:10.1080/14685248.2012.702909.

    • Search Google Scholar
    • Export Citation
  • Andreassen, Ø., C.-E. Wasberg, D. C. Fritts, and J. R. Isler, 1994: Gravity wave breaking in two and three dimensions: 1. Model description and comparison of two-dimensional evolutions. J. Geophys. Res., 99 (D4), 80958108.

    • Search Google Scholar
    • Export Citation
  • Andreassen, Ø., P. O. Hvidsten, D. C. Fritts, and S. Arendt, 1998: Vorticity dynamics in a breaking internal gravity wave. Part 1. Initial instability evolution. J. Fluid Mech., 367, 2746.

    • Search Google Scholar
    • Export Citation
  • Arendt, S., D. C. Fritts, and Ø. Andreassen, 1997: The initial value problem for Kelvin vortex waves. J. Fluid Mech., 344, 181212.

  • Arendt, S., D. C. Fritts, and Ø. Andreassen, 1998: Kelvin twist waves in the transition to turbulence. Eur. J. Mech., 17B, 595604.

  • Balsley, B. B., M. L. Jensen, and R. Frehlich, 1998: The use of state-of-the-art kites for profiling the lower atmosphere. Bound.-Layer Meteor., 87, 125.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., R. G. Frehlich, M. L. Jensen, Y. Meillier, and A. Muschinski, 2003: Extreme gradients in the nocturnal boundary layer: Structure, evolution, and potential causes. J. Atmos. Sci., 60, 24962508.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., R. G. Frehlich, M. L. Jensen, Y. Meillier, and A. Muschinski, 2006: High-resolution in situ profiling through the stable boundary layer: Examination of the SBLtop in terms of minimum shear, maximum stratification, and turbulence decrease. J. Atmos. Sci., 63, 12911307.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., D. A. Lawrence, R. F. Woodman, and D. C. Fritts, 2012: Fine-scale characteristics of temperature, wind, and turbulence in the lower atmosphere (0–1,300 m) over the south Peruvian coast. Bound.-Layer Meteor., 147, 165–178, doi:10.1007/s10546-012-9774-x.

    • Search Google Scholar
    • Export Citation
  • Barat, J., 1982: Some characteristics of clear-air turbulence in the middle atmosphere. J. Atmos. Sci., 39, 25532564.

  • Barat, J., C. Cot, and C. Sidi, 1984: On the measurement of the turbulence dissipation rate from rising balloons. J. Atmos. Oceanic Technol., 1, 270275.

    • Search Google Scholar
    • Export Citation
  • Benielli, D., and J. Sommeria, 1998: Excitation and breaking of internal gravity waves by parametric instability. J. Fluid Mech., 374, 117144.

    • Search Google Scholar
    • Export Citation
  • Bouruet-Aubertot, P., J. Sommeria, and C. Staquet, 1995: Breaking of standing internal gravity waves through two-dimensional instabilities. J. Fluid Mech., 285, 265301.

    • Search Google Scholar
    • Export Citation
  • Caulfield, C. P., and W. R. Peltier, 1994: Three dimensionalization of the stratified mixing layer. Phys. Fluids, 6, 38033805.

  • Chau, J. L., R. J. Doviak, A. Muschinski, and C. L. Holloway, 2000: Lower atmospheric measurements of turbulence and characteristics of Bragg scatterers, using the Jicamarca VHF radar. Radio Sci., 35, 179193.

    • Search Google Scholar
    • Export Citation
  • Coulman, C. E., J. Vernin, and A. Fuchs, 1995: Optical seeing mechanism of formation of thin turbulent laminae in the atmosphere. Appl. Opt., 34, 54615474.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., 1985: Wave Interactions and Fluid Flow. Cambridge University Press, 336 pp.

  • Dalaudier, F., C. Sidi, M. Crochet, and J. Vernin, 1994: Direct evidence of “sheets” in the atmospheric temperature field. J. Atmos. Sci., 51, 237248.

    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., and R. E. Good, 1986: Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere. J. Geophys. Res., 91, 27422748.

    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87 (C12), 96019613.

  • Dosser, H. V., and B. R. Sutherland, 2011: Weakly nonlinear non-Boussinesq internal gravity wave packets. Physica D, 240, 346356.

  • Drazin, P. G., 1977: On the instability of an internal gravity wave. Proc. Roy. Soc. London, A356, 411432.

  • Eaton, F., S. A. Mclaughlin, and J. R. Hines, 1995: A new frequency-modulated continuous wave radar for studying planetary boundary layer morphology. Radio Sci., 30, 7588.

    • Search Google Scholar
    • Export Citation
  • Franke, P. M., S. Mahmoud, K. Raizada, K. Wan, D. C. Fritts, T. Lund, and J. Werne, 2011: Computation of clear-air radar backscatter from numerical simulations of turbulence: 1. Numerical methods and evaluation of biases. J. Geophys. Res., 116, D21101, doi:10.1029/2011JD015895.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and P. K. Rastogi, 1985: Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio Sci., 20, 12471277.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and T. Lund, 2011: Gravity wave influences in the thermosphere and ionosphere: Observations and recent modeling. Aeronomy of the Earth’s Atmosphere and Ionosphere, M. Abdu and D. Pancheva, Eds., Springer, 109–130.

  • Fritts, D. C., and L. Wang, 2013: Gravity wave–fine structure interactions. Part II: Energy dissipation evolutions, statistics, and implications. J. Atmos. Sci., 70, 37353755.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., J. R. Isler, and Ø. Andreassen, 1994: Gravity wave breaking in two and three dimensions: 2. Three-dimensional evolution and instability structure. J. Geophys. Res., 99 (D4), 81098123.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., J. F. Garten, and Ø. Andreassen, 1996: Wave breaking and transition to turbulence in stratified shear flows. J. Atmos. Sci., 53, 10571085.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., S. Arendt, and Ø. Andreassen, 1998: Vorticity dynamics in a breaking internal gravity wave. Part 2. Vortex interactions and transition to turbulence. J. Fluid Mech., 367, 4765.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., C. Bizon, J. A. Werne, and C. K. Meyer, 2003: Layering accompanying turbulence generation due to shear instability and gravity-wave breaking. J. Geophys. Res., 108 (D8), 8452, doi:10.1029/2002JD002406.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2004: Observations of extreme temperature and wind gradients near the summer mesopause during the MaCWAVE/MIDAS rocket campaign. Geophys. Res. Lett., 31, L24S06, doi:10.1029/2003GL019389.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., S. L. Vadas, K. Wan, and J. A. Werne, 2006: Mean and variable forcing of the middle atmosphere by gravity waves. J. Atmos. Sol. Terr. Phys., 68, 247265.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Wang, J. Werne, T. Lund, and K. Wan, 2009a: Gravity wave instability dynamics at high Reynolds numbers. Part I: Wave field evolution at large amplitudes and high frequencies. J. Atmos. Sci., 66, 11261148.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Wang, J. Werne, T. Lund, and K. Wan, 2009b: Gravity wave instability dynamics at high Reynolds numbers. Part II: Turbulence evolution, structure, and anisotropy. J. Atmos. Sci., 66, 11491171.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Wang, and J. Werne, 2009c: Gravity wave–fine structure interactions: A reservoir of small-scale and large-scale turbulence energy. Geophys. Res. Lett., 36, L19805, doi:10.1029/2009GL039501.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., P. Franke, K. Wan, T. Lund, and J. Werne, 2011: Computation of clear-air radar backscatter from numerical simulations of turbulence: 2. Backscatter moments throughout the lifecycle of a Kelvin-Helmholtz instability. J. Geophys. Res., 116, D11105, doi:10.1029/2010JD014618.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., K. Wan, P. Franke, and T. Lund, 2012: Computation of clear-air radar backscatter from numerical simulations of turbulence: 3. Off-zenith measurements and biases throughout the lifecycle of a Kelvin-Helmholtz instability. J. Geophys. Res., 117, D17101, doi:10.1029/2011JD017179.

    • Search Google Scholar
    • Export Citation
  • Fukao, S., H. Luce, T. Mega, and M. K. Yamamoto, 2011: Extensive studies of large-amplitude Kelvin–Helmholtz billows in the lower atmosphere with VHF middle and upper atmosphere radar. Quart. J. Roy. Meteor. Soc., 137, 10191041, doi:10.1002/qj.807.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., P. J. Hendricks, T. B. Sanford, T. R. Osborn, and A. J. Williams, 1981: A composite spectrum of vertical shear in the upper ocean. J. Phys. Oceanogr., 11, 12581271.

    • Search Google Scholar
    • Export Citation
  • Gavrilov, N. M., H. Luce, M. Crochet, F. Dalaudier, and S. Fukao, 2005: Turbulence parameter estimations from high-resolution balloon temperature measurements of the MUTSI-2000 campaign. Ann. Geophys., 23, 24012413.

    • Search Google Scholar
    • Export Citation
  • Goldberg, and Coauthors, 2006: The MaCWAVE program to study gravity wave influences on the polar mesosphere. Ann. Geophys.,24, 1159–1173.

  • Gossard, E. E., D. R. Jensen, and J. H. Richter, 1971: An analytical study of tropospheric structure as seen by high-resolution radar. J. Atmos. Sci., 28, 794807.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., W. D. Neff, R. J. Zamora, and J. E. Gaynor, 1984: The fine structure of elevated refractive layers: Implications for over-the-horizon propagation and radar sounding systems. Radio Sci., 19, 15231533.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., J. E. Gaynor, R. J. Zamora, and W. D. Neff, 1985: Fine structure of elevated stable layers observed by sounder and in-situ tower sensors. J. Atmos. Sci., 42, 21562169.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and M. G. Briscoe, 1979: Internal waves, finestructure, microstructure, and mixing in the ocean. Rev. Geophys., 17, 15241548, doi:10.1029/RG017i007p01524.

    • Search Google Scholar
    • Export Citation
  • Hecht, J. H., A. Z. Liu, R. L. Walterscheid, and R. J. Rudy, 2005: Maui Mesosphere and Lower Thermosphere (Maui MALT) observations of the evolution of Kelvin-Helmholtz billows formed near 86 km altitude. J. Geophys. Res., 110, D09S10, doi:10.1029/2003JD003908.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1991: The saturation of gravity waves in the middle atmosphere. Part I: Critique of linear-instability theory. J. Atmos. Sci., 48, 13481359.

    • Search Google Scholar
    • Export Citation
  • Julien, K., S. Legg, J. McWillimas, and J. Werne, 1996: Rapidly rotating turbulent Rayleigh-Bénard convection. J. Fluid Mech., 322, 243–273.

    • Search Google Scholar
    • Export Citation
  • Kelley, M. C., C. Y. Chen, R. R. Beland, R. Woodman, J. L. Chau, and J. Werne, 2005: Persistence of a Kelvin-Helmholtz instability complex in the upper troposphere. J. Geophys. Res., 110, D14106, doi:10.1029/2004JD005345.

    • Search Google Scholar
    • Export Citation
  • Klaassen, G. P., and W. R. Peltier, 1985: The onset of turbulence in finite-amplitude Kelvin-Helmholtz billows. J. Fluid Mech., 155, 135.

    • Search Google Scholar
    • Export Citation
  • Klostermeyer, J., 1982: On parametric instabilities of finite-amplitude internal gravity waves. J. Fluid Mech., 119, 367377.

  • Klostermeyer, J., 1991: Two- and three-dimensional parametric instabilities in finite amplitude internal gravity waves. Geophys. Astrophys. Fluid Dyn., 64, 125.

    • Search Google Scholar
    • Export Citation
  • Koudella, C. R., and C. Staquet, 2006: Instability mechanisms of a two-dimensional progressive internal gravity wave. J. Fluid Mech., 548, 165196.

    • Search Google Scholar
    • Export Citation
  • LeBlond, P. H., and L. A. Mysak, Eds., 1978: Waves in the Ocean. Elsevier Oceanography Series, Vol. 20, Elsevier, 602 pp.

  • Lehmacher, G. A., L. Guo, E. Kudeki, P. M. Reyes, A. Akgiray, and J. L. Chau, 2007: High-resolution observations of mesospheric layers with the Jicamarca VHF radar. Adv. Space Res., 40, 734743.

    • Search Google Scholar
    • Export Citation
  • Lelong, M.-P., and T. J. Dunkerton, 1998a: Inertia–gravity wave breaking in three dimensions. Part I: Convectively stable waves. J. Atmos. Sci., 55, 24732488.

    • Search Google Scholar
    • Export Citation
  • Lelong, M.-P., and T. J. Dunkerton, 1998b: Inertia–gravity wave breaking in three dimensions. Part II: Convectively unstable waves. J. Atmos. Sci., 55, 24892501.

    • Search Google Scholar
    • Export Citation
  • Li, F., A. Z. Liu, G. R. Swenson, J. H. Hecht, and W. A. Robinson, 2005: Observations of gravity wave breakdown into ripples associated with dynamical instabilities. J. Geophys. Res., 110, D09S11, doi:10.1029/2004JD004849.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35, 5977.

  • Lilly, D. K., and P. J. Kennedy, 1973: Observations of a stationary mountain wave and its associated momentum flux and energy dissipation. J. Atmos. Sci., 30, 11351152.

    • Search Google Scholar
    • Export Citation
  • Lombard, P. N., and J. J. Riley, 1996: Instability and breakdown of internal gravity waves. I. Linear stability analysis. Phys. Fluids, 8, 32713287.

    • Search Google Scholar
    • Export Citation
  • Lübken, F.-J., M. Rapp, and P. Hoffmann, 2002: Neutral air turbulence and temperatures in the vicinity of polar mesosphere summer echoes. J. Geophys. Res., 107 (D15), doi:10.1029/2001JD000915.

    • Search Google Scholar
    • Export Citation
  • Luce, H., M. Crochet, F. Dalaudier, and C. Sidi, 1995: Interpretation of VHF ST radar vertical echoes from in situ temperature sheet observations. Radio Sci., 30, 10021025.

    • Search Google Scholar
    • Export Citation
  • Luce, H., M. Crochet, F. Dalaudier, and C. Sidi, 2001: Temperature sheets and aspect sensitive radar echoes. Ann. Geophys., 19, 899920.

    • Search Google Scholar
    • Export Citation
  • Luce, H., S. Fukao, F. Dalaudier, and M. Crochet, 2002: Strong mixing events observed near the tropopause with the MU radar and high-resolution balloon techniques. J. Atmos. Sci., 59, 28852896.

    • Search Google Scholar
    • Export Citation
  • Luce, H., G. Hassenpflug, M. Yamamoto, M. Crochet, and S. Fukao, 2007: Range-imaging observations of cumulus convection and Kelvin-Helmholtz instabilities with the MU radar. Radio Sci., 42, RS1005, doi:10.1029/2005RS003439.

    • Search Google Scholar
    • Export Citation
  • Luce, H., G. Hassenpflug, M. Yamamoto, S. Fukao, and K. Sato, 2008: High-resolution observations with MU radar of a KH instability triggered by an inertia–gravity wave in the upper part of a jet stream. J. Atmos. Sci., 65, 17111718.

    • Search Google Scholar
    • Export Citation
  • Lund, T. S., and D. C. Fritts, 2012: Numerical simulation of gravity wave breaking in the lower thermosphere. J. Geophys. Res.,117, D21105, doi:10.1029/2012JD017536.

  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375396, doi:10.1023/A:1001765727956.

  • McComas, C. H., and F. P. Bretherton, 1977: Resonant interactions of oceanic internal waves. J. Geophys. Res., 82, 13971411.

  • McEwan, A. D., 1971: Degeneration of resonantly excited standing internal gravity waves. J. Fluid Mech., 50, 431448.

  • McEwan, A. D., and A. Plumb, 1977: Off-resonant amplification of finite internal wave packets. Dyn. Atmos. Oceans, 2, 83105.

  • Mied, R. P., 1976: The occurrence of parametric instabilities in finite-amplitude internal gravity waves. J. Fluid Mech., 78, 763784.

    • Search Google Scholar
    • Export Citation
  • Müller, P., G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24, 492536.

    • Search Google Scholar
    • Export Citation
  • Muschinski, A., and C. Wode, 1998: First in situ evidence for coexisting submeter temperature and humidity sheets in the lower free troposphere. J. Atmos. Sci., 55, 28932906.

    • Search Google Scholar
    • Export Citation
  • Muschinski, A., P. B. Chilson, S. Kern, J. Nielinger, G. Schmidt, and T. Prenosil, 1999: First frequency-domain interferometry observations of large-scale vertical motion in the atmosphere. J. Atmos. Sci., 56, 12481258.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and F. D. Eaton, 2001: Persistent layers of enhanced Cn 2 in the lower stratosphere from radar. Radio Sci., 36, 137149.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1972: On the breaking of standing internal gravity waves. J. Fluid Mech., 54, 577598.

  • Orlanski, I., and C. P. Cerasoli, 1981: Energy transfer among internal gravity modes: Weak and strong. J. Geophys. Res., 86 (C5), 41034124.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. L., D. C. Fritts, Ø. Andreassen, and I. Lie, 1994: Three-dimensional evolution of Kelvin-Helmholtz billows in stratified compressible flow. Geophys. Res. Lett., 21, 22872290.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. L., D. C. Fritts, and Ø. Andreassen, 1996: Evolution and breakdown of Kelvin–Helmholtz billows in stratified compressible flows. Part II: Instability structure, evolution, and energetics. J. Atmos. Sci., 53, 31923212.

    • Search Google Scholar
    • Export Citation
  • Pfrommer, T., P. Hickson, and C.-Y. She, 2009: A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies. Geophys. Res. Lett., 36, L15831, doi:10.1029/2009GL038802.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. 2nd ed. Cambridge University Press, 344 pp.

  • Phillips, O. M., 1981: Wave interactions—The evolution of an idea. J. Fluid Mech., 106, 215227.

  • Rapp, M., F.-J. Lübken, A. Müllemann, G. E. Thomas, and E. J. Jensen, 2002: Small-scale temperature variations in the vicinity of NLC: Experimental and model results. J. Geophys. Res., 107, 4392, doi:10.1029/2001JD001241.

    • Search Google Scholar
    • Export Citation
  • Rapp, M., B. Strelnikov, A. Müllemann, F.-J. Lübken, and D. C. Fritts, 2004: Turbulence measurements implications for gravity wave dissipation during the MaCWAVE/MIDAS summer rocket program. Geophys. Res. Lett., 31, L24S07, doi:10.1029/2003GL019325.

    • Search Google Scholar
    • Export Citation
  • Riley, J. J., and E. Lindborg, 2007: Stratified turbulence: A possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci., 65, 24162424.

    • Search Google Scholar
    • Export Citation
  • Seim, H. E., and M. C. Gregg, 1994: Detailed observations of a naturally occurring shear instability. J. Geophys. Res., 99 (C5), 10 04910 073.

    • Search Google Scholar
    • Export Citation
  • Smith, S. A., D. C. Fritts, and T. E. VanZandt, 1987: Evidence for a saturated spectrum of atmospheric gravity waves. J. Atmos. Sci., 44, 14041410.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. D. Nash, and J. N. Moun, 2005: Differential diffusion in breaking Kelvin–Helmholtz billows. J. Phys. Oceanogr., 35, 10041022.

    • Search Google Scholar
    • Export Citation
  • Sonmor, L. J., and G. P. Klaassen, 1997: Toward a unified theory of gravity wave stability. J. Atmos. Sci., 54, 26552680.

  • Sorbjan, Z., and B. B. Balsley, 2008: Microstructure of turbulence in the stably stratified boundary layer. Bound.-Layer Meteor., 129, 191210, doi:10.1007/s10546-008-9310-1.

    • Search Google Scholar
    • Export Citation
  • Spalart, P. R., R. D. Moser, and M. M. Rogers, 1991: Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comput. Phys., 96, 297324.

    • Search Google Scholar
    • Export Citation
  • Staquet, C., and J. Sommeria, 2002: Internal gravity waves: From instability to turbulence. Annu. Rev. Fluid Mech., 34, 559593.

  • Sutherland, B. R., 2001: Finite-amplitude internal wavepacket dispersion and breaking. J. Fluid Mech., 429, 343380.

  • Sutherland, B. R., 2006a: Internal wave instability: Wave-wave versus wave-induced mean flow interactions. Phys. Fluids, 18, 074107, doi:10.1063/1.2219102.

    • Search Google Scholar
    • Export Citation
  • Sutherland, B. R., 2006b: Weakly nonlinear internal gravity wavepackets. J. Fluid Mech., 569, 249258.

  • Thorpe, S. A., 1968: On standing internal gravity waves of finite amplitude. J. Fluid Mech., 32, 489528.

  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc. London, A286, 125181.

  • Thorpe, S. A., 1985: Laboratory observations of secondary structures in Kelvin-Helmholtz billows and consequences for ocean mixing. Geophys. Astrophys. Fluid Dyn., 34 (1–4), 175199.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1987: Transitional phenomena and the development of turbulence in stratified fluids: A review. J. Geophys. Res., 92 (C5), 52315248.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1994: Observations of parametric instability and breaking waves in an oscillating tilted tube. J. Fluid Mech., 261, 3345.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1999: On the breaking of internal waves in the ocean. J. Phys. Oceanogr., 29, 24332441.

  • Tsuda, T., T. Inoue, D. C. Fritts, T. E. VanZandt, S. Kato, T. Sato, and S. Fukao, 1989: MST radar observations of a saturated gravity wave spectrum. J. Atmos. Sci., 46, 24402447.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., S. Kato, T. Yokoi, T. Inoue, M. Yamamoto, T. E. VanZandt, S. Fukao, and T. Sato, 1990: Gravity waves in the mesosphere observed with the middle and upper atmosphere radar. Radio Sci., 25, 10051018.

    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 1995: The instability of internal gravity waves to localized disturbances. Ann. Geophys., 13, 196210.

  • VanZandt, T. E., J. L. Green, K. S. Gage, and W. L. Clark, 1978: Vertical profiles of refractivity turbulence structure constant: comparison of observations by the Sunset Radar with a new theoretical model. Radio Sci., 13, 819829.