Gravity Wave–Fine Structure Interactions. Part II: Energy Dissipation Evolutions, Statistics, and Implications

David C. Fritts GATS Inc., Boulder, Colorado

Search for other papers by David C. Fritts in
Current site
Google Scholar
PubMed
Close
and
Ling Wang GATS Inc., Boulder, Colorado

Search for other papers by Ling Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Part I of this paper employs four direct numerical simulations (DNSs) to examine the dynamics and energetics of idealized gravity wave–fine structure (GW–FS) interactions. That study and this companion paper were motivated by the ubiquity of multiscale GW–FS superpositions throughout the atmosphere. These DNSs exhibit combinations of wave–wave interactions and local instabilities that depart significantly from those accompanying idealized GWs or mean flows alone, surprising dependence of the flow evolution on the details of the FS, and an interesting additional pathway to instability and turbulence due to GW–FS superpositions. This paper examines the mechanical and thermal energy dissipation rates occurring in two of these DNSs. Findings include 1) dissipation that tends to be much more localized and variable than that due to GW instability in the absence of FS, 2) dissipation statistics indicative of multiple turbulence sources, 3) strong influences of FS shears on instability occurrence and turbulence intensities and statistics, and 4) significant differences between mechanical and thermal dissipation rate fields having potentially important implications for measurements of these flows.

Corresponding author address: D. C. Fritts, GATS Inc./Boulder, 3360 Mitchell Lane, Boulder, CO 80301. E-mail: dave@gats-inc.com

Abstract

Part I of this paper employs four direct numerical simulations (DNSs) to examine the dynamics and energetics of idealized gravity wave–fine structure (GW–FS) interactions. That study and this companion paper were motivated by the ubiquity of multiscale GW–FS superpositions throughout the atmosphere. These DNSs exhibit combinations of wave–wave interactions and local instabilities that depart significantly from those accompanying idealized GWs or mean flows alone, surprising dependence of the flow evolution on the details of the FS, and an interesting additional pathway to instability and turbulence due to GW–FS superpositions. This paper examines the mechanical and thermal energy dissipation rates occurring in two of these DNSs. Findings include 1) dissipation that tends to be much more localized and variable than that due to GW instability in the absence of FS, 2) dissipation statistics indicative of multiple turbulence sources, 3) strong influences of FS shears on instability occurrence and turbulence intensities and statistics, and 4) significant differences between mechanical and thermal dissipation rate fields having potentially important implications for measurements of these flows.

Corresponding author address: D. C. Fritts, GATS Inc./Boulder, 3360 Mitchell Lane, Boulder, CO 80301. E-mail: dave@gats-inc.com
Save
  • Balsley, B. B., M. L. Jensen, and R. Frehlich, 1998: The use of state-of-the-art kites for profiling the lower atmosphere. Bound.-Layer Meteor., 87, 125.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., R. G. Frehlich, M. L. Jensen, Y. Meillier, and A. Muschinski, 2003: Extreme gradients in the nocturnal boundary layer: Structure, evolution, and potential causes. J. Atmos. Sci., 60, 24962508.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., R. G. Frehlich, M. L. Jensen, Y. Meillier, and A. Muschinski, 2006: High-resolution in situ profiling through the stable boundary layer: Examination of the SBL top in terms of minimum shear, maximum stratification, and turbulence decrease. J. Atmos. Sci., 63, 12911307.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., G. Svensson, and M. Tjernström, 2008: On the scale-dependence of the gradient Richardson number in the residual layer. Bound.-Layer Meteor., 127, 5772.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., D. A. Lawrence, R. F. Woodman, and D. C. Fritts, 2013: Fine-scale characteristics of temperature, wind, and turbulence in the lower atmosphere (0–1,300 m) over the south Peruvian coast. Bound.-Layer Meteor., 147, 165–178, doi:10.1007/s10546-012-9774-x.

    • Search Google Scholar
    • Export Citation
  • Barat, J., 1982: Some characteristics of clear-air turbulence in the middle atmosphere. J. Atmos. Sci., 39, 25532564.

  • Barat, J., C. Cot, and C. Sidi, 1984: On the measurement of the turbulence dissipation rate from rising balloons. J. Atmos. Oceanic Technol., 1, 270275.

    • Search Google Scholar
    • Export Citation
  • Chau, J. L., R. J. Doviak, A. Muschinski, and C. L. Holloway, 2000: Lower atmospheric measurements of turbulence and characteristics of Bragg scatterers, using the Jicamarca VHF radar. Radio Sci., 35, 179193.

    • Search Google Scholar
    • Export Citation
  • Chimonas, G., 1972: The stability of a coupled wave-turbulence system in a parallel shear flow. Bound.-Layer Meteor., 2, 444452, doi:10.1007/BF00821547.

    • Search Google Scholar
    • Export Citation
  • Chimonas, G., 1999: Steps, waves and turbulence in the stably stratified planetary boundary layer. Bound.-Layer Meteor., 90, 397421, doi:10.1023/A:1001709029773.

    • Search Google Scholar
    • Export Citation
  • Cot, C., and J. Barat, 1986: Wave-turbulence interaction in the stratosphere: A case study. J. Geophys. Res., 91 (D2), 27492756.

  • Coulman, C. E., J. Vernin, and A. Fuchs, 1995: Optical seeing mechanism of formation of thin turbulent laminae in the atmosphere. Appl. Opt., 34, 54615474.

    • Search Google Scholar
    • Export Citation
  • Dalaudier, F., C. Sidi, M. Crochet, and J. Vernin, 1994: Direct evidence of “sheets” in the atmospheric temperature field. J. Atmos. Sci., 51, 237248.

    • Search Google Scholar
    • Export Citation
  • Eaton, F., S. A. Mclaughlin, and J. R. Hines, 1995: A new frequency-modulated continuous wave radar for studying planetary boundary layer morphology. Radio Sci., 30, 7588.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., and F. Einaudi, 1981: The interaction between an internal gravity wave and the planetary boundary layer. Part II: Effect of the wave on the turbulence structure. Quart. J. Roy. Meteor. Soc., 107, 807832.

    • Search Google Scholar
    • Export Citation
  • Franke, P. M., S. Mahmoud, K. Raizada, K. Wan, D. C. Fritts, T. Lund, and J. Werne, 2011: Computation of clear-air radar backscatter from numerical simulations of turbulence: 1. Numerical methods and evaluation of biases. J. Geophys. Res., 116, D21101, doi:10.1029/2011JD015895.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Y. Meillier, M. L. Jensen, and B. Balsley, 2003: Turbulence measurements with the CIRES tethered lifting system during CASES-99: Calibration and spectral analysis of temperature and velocity. J. Atmos. Sci., 60, 24872495.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Y. Meillier, M. L. Jensen, and B. Balsley, 2004: A statistical description of small-scale turbulence in the low-level nocturnal jet. J. Atmos. Sci., 61, 10791085.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and P. K. Rastogi, 1985: Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio Sci., 20, 12471277.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., S. A. Vadas, and Y. Yamada, 2002: An estimate of strong local gravity wave body forcing based on OH airglow and meteor radar observations. Geophys. Res. Lett., 29, 1429, doi:10.1029/2001GL013753.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., C. Bizon, J. A. Werne, and C. K. Meyer, 2003: Layering accompanying turbulence generation due to shear instability and gravity wave breaking. J. Geophys. Res., 108, 8452, doi:10.1029/2002JD002406.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2004: Observations of extreme temperature and wind gradients near the summer mesopause during the MaCWAVE/MIDAS rocket campaign. Geophys. Res. Lett., 31, L24S06, doi:10.1029/2003GL019389.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Wang, and J. Werne, 2009a: Gravity wave–fine structure interactions: A reservoir of small-scale and large-scale turbulence energy. Geophys. Res. Lett., 36, L19805, doi:10.1029/2009GL039501.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Wang, J. Werne, T. Lund, and K. Wan, 2009b: Gravity wave instability dynamics at high Reynolds numbers. Part I: Wave field evolution at large amplitudes and high frequencies. J. Atmos. Sci., 66, 11261148.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Wang, J. Werne, T. Lund, and K. Wan, 2009c: Gravity wave instability dynamics at high Reynolds numbers. Part II: Turbulence evolution, structure, and anisotropy. J. Atmos. Sci., 66, 11491171.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., P. Franke, K. Wan, T. Lund, and J. Werne, 2011: Computation of clear-air radar backscatter from numerical simulations of turbulence: 2. Backscatter moments throughout the lifecycle of a Kelvin-Helmholtz instability. J. Geophys. Res., 116, D11105, doi:10.1029/2010JD014618.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., K. Wan, P. Franke, and T. Lund, 2012: Computation of clear-air radar backscatter from numerical simulations of turbulence: 3. Off-zenith measurements and biases throughout the lifecycle of a Kelvin-Helmholtz instability. J. Geophys. Res., 117, D17101, doi:10.1029/2011JD017179.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Wang, and J. A. Werne, 2013: Gravity wave–fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. J. Atmos. Sci.,70, 3710–3734.

  • Fua, D., G. Chimonas, F. Einaudi, and O. Zeman, 1982: An analysis of wave-turbulence interaction. J. Atmos. Sci., 39, 24502463.

  • Fukao, S., H. Luce, T. Mega, and M. K. Yamamoto, 2011: Extensive studies of large-amplitude Kelvin–Helmholtz billows in the lower atmosphere with VHF middle and upper atmosphere radar. Quart. J. Roy. Meteor. Soc., 137, 10191041, doi:10.1002/qj.807.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225264, doi:10.1080/03091927208236082.

  • Garrett, C., and W. Munk, 1979: Internal waves in the ocean. Annu. Rev. Fluid Mech., 11, 339369, doi:10.1146/annurev.fl.11.010179.002011.

    • Search Google Scholar
    • Export Citation
  • Gavrilov, N. M., H. Luce, M. Crochet, F. Dalaudier, and S. Fukao, 2005: Turbulence parameter estimations from high-resolution balloon temperature measurements of the MUTSI-2000 campaign. Ann. Geophys., 23, 24012413.

    • Search Google Scholar
    • Export Citation
  • Goldberg, R. A., and Coauthors, 2006: The MaCWAVE program to study gravity wave influences on the polar mesosphere. Ann. Geophys.,24, 1159–1173.

  • Gossard, E. E., W. D. Neff, R. J. Zamora, and J. E. Gaynor, 1984: The fine structure of elevated refractive layers: Implications for over-the-horizon propagation and radar sounding systems. Radio Sci., 19, 15231533.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1987: Diapycnal mixing in the thermocline: A review. J. Geophys. Res., 92 (C5), 52495286.

  • Gregg, M. C., and M. G. Briscoe, 1979: Internal waves, finestructure, microstructure, and mixing in the ocean. Rev. Geophys., 17, 15241548, doi:10.1029/RG017i007p01524.

    • Search Google Scholar
    • Export Citation
  • Hecht, J. H., 2004: Instability layers and airglow imaging. Rev. Geophys., 42, RG1001, doi:10.1029/2003RG000131.

  • Hecht, J. H., A. Z. Liu, R. L. Walterscheid, and R. J. Rudy, 2005: Maui Mesosphere and Lower Thermosphere (Maui MALT) observations of the evolution of Kelvin-Helmholtz billows formed near 86 km altitude. J. Geophys. Res., 110, D09S10, doi:10.1029/2003JD003908.

    • Search Google Scholar
    • Export Citation
  • Kelley, M. C., C. Y. Chen, R. R. Beland, R. Woodman, J. L. Chau, and J. Werne, 2005: Persistence of a Kelvin-Helmholtz instability complex in the upper troposphere. J. Geophys. Res., 110, D14106, doi:10.1029/2004JD005345.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and Coauthors, 2005: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci., 62, 38853908.

  • Lehmacher, G. A., L. Guo, E. Kudeki, P. M. Reyes, A. Akgiray, and J. L. Chau, 2007: High-resolution observations of mesospheric layers with the Jicamarca VHF radar. Adv. Space Res., 40, 734743.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35, 5977.

  • Lübken, F.-J., M. Rapp, and P. Hoffmann, 2002: Neutral air turbulence and temperatures in the vicinity of polar mesosphere summer echoes. J. Geophys. Res., 107, 4273, doi:10.1029/2001JD000915.

    • Search Google Scholar
    • Export Citation
  • Luce, H., M. Crochet, F. Dalaudier, and C. Sidi, 1995: Interpretation of VHF ST radar vertical echoes from in situ temperature sheet observations. Radio Sci., 30, 10021025.

    • Search Google Scholar
    • Export Citation
  • Luce, H., M. Crochet, F. Dalaudier, and C. Sidi, 2001: Temperature sheets and aspect sensitive radar echoes. Ann. Geophys., 19, 899920.

    • Search Google Scholar
    • Export Citation
  • Luce, H., S. Fukao, F. Dalaudier, and M. Crochet, 2002: Strong mixing events observed near the tropopause with the MU radar and high-resolution balloon techniques. J. Atmos. Sci., 59, 28852896.

    • Search Google Scholar
    • Export Citation
  • Luce, H., G. Hassenpflug, M. Yamamoto, M. Crochet, and S. Fukao, 2007: Range-imaging observations of cumulus convection and Kelvin-Helmholtz instabilities with the MU radar. Radio Sci., 42, RS1005, doi:10.1029/2005RS003439.

    • Search Google Scholar
    • Export Citation
  • Luce, H., G. Hassenpflug, M. Yamamoto, S. Fukao, and K. Sato, 2008: High-resolution observations with MU radar of a KH instability triggered by an inertia–gravity wave in the upper part of a jet stream. J. Atmos. Sci., 65, 17111718.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn., 11 (3–4), 263279, doi:10.1007/s001620050093.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375396, doi:10.1023/A:1001765727956.

  • Monti, P., H. J. S. Fernando, M. Princevac, W. C. Chan, T. A. Kowalewski, and E. R. Pardyjak, 2002: Observations of flow and turbulence in the nocturnal boundary layer over a slope. J. Atmos. Sci., 59, 25132534.

    • Search Google Scholar
    • Export Citation
  • Müller, P., G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24, 492536.

    • Search Google Scholar
    • Export Citation
  • Muschinski, A., and C. Wode, 1998: First in situ evidence for coexisting submeter temperature and humidity sheets in the lower free troposphere. J. Atmos. Sci., 55, 28932906.

    • Search Google Scholar
    • Export Citation
  • Muschinski, A., P. B. Chilson, S. Kern, J. Nielinger, G. Schmidt, and T. Prenosil, 1999: First frequency-domain interferometry observations of large-scale vertical motion in the atmosphere. J. Atmos. Sci., 56, 12481258.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and F. D. Eaton, 2001: Persistent layers of enhanced Cn 2 in the lower stratosphere from radar. Radio Sci., 36, 137149.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., and C. S. Cox, 1972: Oceanic fine structure. Geophys. Fluid Dyn., 3, 321345.

  • Pfrommer, T., P. Hickson, and C.-Y. She, 2009: A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies. Geophys. Res. Lett., 36, L15831, doi:10.1029/2009GL038802.

    • Search Google Scholar
    • Export Citation
  • Rapp, M., F.-J. Lübken, A. Müllemann, G. E. Thomas, and E. J. Jensen, 2002: Small-scale temperature variations in the vicinity of NLC: Experimental and model results. J. Geophys. Res., 107, 4392, doi:10.1029/2001JD001241.

    • Search Google Scholar
    • Export Citation
  • Rapp, M., B. Strelnikov, A. Müllemann, F.-J. Lübken, and D. C. Fritts, 2004: Turbulence measurements implications for gravity wave dissipation during the MaCWAVE/MIDAS summer rocket program. Geophys. Res. Lett., 31, L24S07, doi:10.1029/2003GL019325.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., B. K. Woods, J. Jensen, W. A. Cooper, J. D. Doyle, Q. F. Jiang, and V. Grubišić, 2008: Mountain waves entering the stratosphere. J. Atmos. Sci., 65, 25432562.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2002: Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound.-Layer Meteor., 105, 199219, doi:10.1023/A:1019969131774.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2004: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor., 110, 255279, doi:10.1023/A:1026097926169.

    • Search Google Scholar
    • Export Citation
  • Theuerkauf, A., M. Gerding, and F.-J. Lübken, 2011: LITOS—A new balloon-borne instrument for fine-scale turbulence soundings in the stratosphere. Atmos. Meas. Tech., 4, 5566, doi:10.5194/amt-4-55-2011.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1987: Transitional phenomena and the development of turbulence in stratified fluids: A review. J. Geophys. Res., 92 (C5), 52315248.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1999: On the breaking of internal waves in the ocean. J. Phys. Oceanogr., 29, 24332441.

  • VanZandt, T. E., 1982: A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9, 575578.

  • VanZandt, T. E., and D. C. Fritts, 1989: A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability. Pure Appl. Geophys., 130, 399420.

    • Search Google Scholar
    • Export Citation
  • VanZandt, T. E., J. L. Green, K. S. Gage, and W. L. Clark, 1978: Vertical profiles of refractivity turbulence structure constant: Comparison of observations by the Sunset Radar with a new theoretical model. Radio Sci., 13, 819829.

    • Search Google Scholar
    • Export Citation
  • Wang, L., D. C. Fritts, B. P. Williams, R. A. Goldberg, F. J. Schmidlin, and U. Blum, 2006: Gravity waves in the middle atmosphere during the MaCWAVE winter campaign. Ann. Geophys.,24, 1209–1226.

  • Werne, J., and D. C. Fritts, 1999: Stratified shear turbulence: Evolution and statistics. Geophys. Res. Lett., 26, 439442.

  • Werne, J., and D. C. Fritts, 2000: Structure functions in stratified shear turbulence. Preprints, 10th User Group Conf., Albequerque, NM, DoD/HPC, 11 pp. [Available online at http://www.cora.nwra.com/pub/LarryWeaver/hpcmo_meeting3.pdf.]

  • Werne, J., and D. C. Fritts, 2001: Anisotropy in a stratified shear layer. Phys. Chem. Earth, 26B, 263268.

  • Werne, J., T. Lund, B. A. Pettersson-Reif, P. Sullivan, and D. C. Fritts, 2005: CAP phase II simulations for the Air Force HEL-JTO project: Atmospheric turbulence simulations on NAVO’s 3000-processor IBM P4+ and ARL’s 2000-processor Intel Xeon EM64T cluster. Proc. 15th Department of Defense High Performance Computing Modernization Program Users Group Conf., Nashville, TN, DoD, 100–111.

  • Witt, G., 1962: Height, structure, and displacements of noctilucent clouds. Tellus, 14, 118.

  • Woodman, R. F., G. Michhue, J. Roettger, and O. Castillo, 2007: The SOUSY radar at Jicamarca: High altitude-resolution capabilities. Extended Abstracts, 11th International Workshop on Technical and Scientific Aspects of MST Radar, Gadanki, India, Department of Science and Technology, Government of India, 4 pp.

  • Woods, J. D., 1968: Wave-induced shear instability in the summer thermocline. J. Fluid Mech., 32, 791800.

  • Woods, J. D., 1969: On Richardson’s number as a criterion for laminar-turbulent-laminar transition in the ocean and atmosphere. Radio Sci., 4, 12891298.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., and R. L. Wiley, 1972: Billow turbulence and ocean microstructure. Deep-Sea Res., 19, 87121.

  • Wroblewski, D., O. Cote, J. Hacker, T. L. Crawford, and R. J. Dobosy, 2003: Refractive turbulence in the upper troposphere and lower stratosphere: Analysis of aircraft measurements using structure functions. Preprints, 12th Symp. on Meteorological Observations and Instrumentation, Long Beach, CA, Amer. Meteor. Soc., 1.3. [Available online at https://ams.confex.com/ams/annual2003/techprogram/paper_58074.htm.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 849 648 98
PDF Downloads 157 17 3