Improving Antarctic Total Ozone Projections by a Process-Oriented Multiple Diagnostic Ensemble Regression

Alexey Yu. Karpechko Arctic Research, Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Alexey Yu. Karpechko in
Current site
Google Scholar
PubMed
Close
,
Douglas Maraun GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Search for other papers by Douglas Maraun in
Current site
Google Scholar
PubMed
Close
, and
Veronika Eyring Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

Search for other papers by Veronika Eyring in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Accurate projections of stratospheric ozone are required because ozone changes affect exposure to ultraviolet radiation and tropospheric climate. Unweighted multimodel ensemble-mean (uMMM) projections from chemistry–climate models (CCMs) are commonly used to project ozone in the twenty-first century, when ozone-depleting substances are expected to decline and greenhouse gases are expected to rise. Here, the authors address the question of whether Antarctic total column ozone projections in October given by the uMMM of CCM simulations can be improved by using a process-oriented multiple diagnostic ensemble regression (MDER) method. This method is based on the correlation between simulated future ozone and selected key processes relevant for stratospheric ozone under present-day conditions. The regression model is built using an algorithm that selects those process-oriented diagnostics that explain a significant fraction of the spread in the projected ozone among the CCMs. The regression model with observed diagnostics is then used to predict future ozone and associated uncertainty. The precision of the authors’ method is tested in a pseudoreality; that is, the prediction is validated against an independent CCM projection used to replace unavailable future observations. The tests show that MDER has higher precision than uMMM, suggesting an improvement in the estimate of future Antarctic ozone. The authors’ method projects that Antarctic total ozone will return to 1980 values at around 2055 with the 95% prediction interval ranging from 2035 to 2080. This reduces the range of return dates across the ensemble of CCMs by about a decade and suggests that the earliest simulated return dates are unlikely.

Corresponding author address: A.Yu. Karpechko, Arctic Research, Finnish Meteorological Institute, P.O.B. 503, Helsinki FIN-00101, Finland. E-mail: alexey.karpechko@fmi.fi

Abstract

Accurate projections of stratospheric ozone are required because ozone changes affect exposure to ultraviolet radiation and tropospheric climate. Unweighted multimodel ensemble-mean (uMMM) projections from chemistry–climate models (CCMs) are commonly used to project ozone in the twenty-first century, when ozone-depleting substances are expected to decline and greenhouse gases are expected to rise. Here, the authors address the question of whether Antarctic total column ozone projections in October given by the uMMM of CCM simulations can be improved by using a process-oriented multiple diagnostic ensemble regression (MDER) method. This method is based on the correlation between simulated future ozone and selected key processes relevant for stratospheric ozone under present-day conditions. The regression model is built using an algorithm that selects those process-oriented diagnostics that explain a significant fraction of the spread in the projected ozone among the CCMs. The regression model with observed diagnostics is then used to predict future ozone and associated uncertainty. The precision of the authors’ method is tested in a pseudoreality; that is, the prediction is validated against an independent CCM projection used to replace unavailable future observations. The tests show that MDER has higher precision than uMMM, suggesting an improvement in the estimate of future Antarctic ozone. The authors’ method projects that Antarctic total ozone will return to 1980 values at around 2055 with the 95% prediction interval ranging from 2035 to 2080. This reduces the range of return dates across the ensemble of CCMs by about a decade and suggests that the earliest simulated return dates are unlikely.

Corresponding author address: A.Yu. Karpechko, Arctic Research, Finnish Meteorological Institute, P.O.B. 503, Helsinki FIN-00101, Finland. E-mail: alexey.karpechko@fmi.fi
Save
  • Abe, M., H. Shiogama, T. Nozawa, and S. Emori, 2011: Estimation of future surface temperature changes constrained using the future-present correlated modes in inter-model variability of CMIP3 multimodel simulations. J. Geophys. Res., 116, D18104, doi:10.1029/2010jd015111.

    • Search Google Scholar
    • Export Citation
  • Akiyoshi, H., T. Sugita, H. Kanzawa, and N. Kawamoto, 2004: Ozone perturbations in the Arctic summer lower stratosphere as a reflection of NOx chemistry and planetary scale wave activity. J. Geophys. Res., 109, D03304, doi:10.1029/2003JD003632.

    • Search Google Scholar
    • Export Citation
  • Akiyoshi, H., and Coauthors, 2009: A CCM simulation of the breakup of the Antarctic polar vortex in the years 1980–2004 under the CCMVal scenarios. J. Geophys. Res., 114, D03103, doi:10.1029/2007JD009261.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and R. J. Wilson, 2010: Sensitivity of polar ozone to sea surface temperatures and halogen amounts. J. Geophys. Res., 115, D18303, doi:10.1029/2009JD013292.

    • Search Google Scholar
    • Export Citation
  • Austin, J., R. J. Wilson, F. Li, and H. Vomel, 2007: Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry-climate model simulations. J. Atmos. Sci., 64, 905921.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and Coauthors, 2010: The decline and recovery of total column ozone using a multi-model time series analysis. J. Geophys. Res., 115, D00M10, doi:10.1029/2010JD013857.

    • Search Google Scholar
    • Export Citation
  • Bodeker, G. E., H. Shiona, and H. Eskes, 2005: Indicators of Antarctic ozone depletion. Atmos. Chem. Phys., 5, 26032615.

  • Boe, J. L., A. Hall, and X. Qu, 2009: September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat. Geosci., 2, 341343, doi:10.1038/ngeo467.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and D. B. Stephenson, 2012: Higher precision estimates of regional polar warming by ensemble regression of climate model projections. Climate Dyn., 39, 28052821, doi:10.1007/s00382-012-1330-3.

    • Search Google Scholar
    • Export Citation
  • Cionni, I., and Coauthors, 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys., 11, 11 26711 292, doi:10.5194/acp-11-11267-2011.

    • Search Google Scholar
    • Export Citation
  • Connolley, W. M., and T. J. Bracegirdle, 2007: An Antarctic assessment of IPCC AR4 climate models. Geophys. Res. Lett., 34, L22505, doi:10.1029/2007GL031648.

    • Search Google Scholar
    • Export Citation
  • Davison, A. C., 2003: Statistical Models. Cambridge Series in Statistical and Probabilistic Mathematics, Vol. 11, Cambridge University Press, 738 pp.

  • de Grandpré, J., S. R. Beagley, V. I. Fomichev, E. Griffioen, J. C. Mc-Connell, A. S. Medvedev, and T. G. Shepherd, 2000: Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model. J. Geophys. Res., 105, 26 47526 491.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., 2007: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Global Planet. Change, 57, 1626.

    • Search Google Scholar
    • Export Citation
  • Egorova, T., E. Rozanov, V. Zubov, E. Manzini, W. Schmutz, and T. Peter, 2005: Chemistry-climate model SOCOL: A validation of the present-day climatology. Atmos. Chem. Phys., 5, 15571576.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2005: A strategy for process-oriented validation of coupled chemistry–climate models. Bull. Amer. Meteor. Soc., 86, 11171133.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2007: Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112, D16303, doi:10.1029/2006JD008332.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2010a: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmos. Chem. Phys., 10, 94519472, doi:10.5194/acp-10-9451-2010.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., T. G. Shepherd, and D. W. Waugh, Eds., 2010b: Chemistry-climate model validation. WCRP-132, WMO/TD 1526, SPARC Rep. 5, 434 pp. [Available online at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no5/.]

  • Eyring, V., and Coauthors, 2013: Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res., 118, 50295060, doi:10.1002/jgrd.50316.

    • Search Google Scholar
    • Export Citation
  • Fioletov, V. E., G. E. Bodeker, A. J. Miller, R. D. McPeters, and R. Stolarski, 2002: Global ozone and zonal total ozone variations estimated from ground-based and satellite measurements: 1964–2000. J. Geophys. Res., 107, 4647, doi:10.1029/2001JD001350.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., A. I. Jonsson, J. de Grandpré, S. R. Beagley, C. McLandress, K. Semeniuk, and T. G. Shepherd, 2007: Response of the middle atmosphere to CO2 doubling: Results from the Canadian Middle Atmosphere Model. J. Climate, 20, 11211144.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Garny, H., M. Dameris, and A. Stenke, 2009: Impact of prescribed SSTs on climatologies and long-term trends in CCM simulations. Atmos. Chem. Phys., 9, 60176031, doi:10.5194/acp-9-6017-2009.

    • Search Google Scholar
    • Export Citation
  • Grooß, J.-U., and J. M. Russell III, 2005: Technical note: A stratospheric climatology for O3, H2O, CH4, NOx, HCl and HF derived from HALOE measurements. Atmos. Chem. Phys., 5, 27972807.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33, L03502, doi:10.1029/2005GL025127.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., and T. G. Shepherd, 2009: Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nat. Geosci., 2, 687691, doi:10.1038/ngeo604.

    • Search Google Scholar
    • Export Citation
  • Jöckel, P., and Coauthors, 2006: The atmospheric chemistry general circulation model ECHAM5/MESSy1: Consistent simulation of ozone from the surface to the mesosphere. Atmos. Chem. Phys., 6, 50675104, doi:10.5194/acp-6-5067-2006.

    • Search Google Scholar
    • Export Citation
  • Jourdain, L., S. Bekki, F. Lott, and F. Lefévre, 2008: The coupled chemistry-climate model LMDz-REPROBUS: Description and evaluation of a transient simulation of the period 1980–1999. Ann. Geophys., 26, 13911413, doi:10.5194/angeo-26-1391-2008.

    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Yu., N. P. Gillett, L. J. Gray, and M. Dall’Amico, 2010a: Influence of ozone recovery and greenhouse gas increases on Southern Hemisphere circulation. J. Geophys. Res., 115, D22117, doi:10.1029/2010JD014423.

    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Yu., N. P. Gillett, B. Hassler, K. H. Rosenlof, and E. Rozanov, 2010b: Quantitative assessment of Southern Hemisphere ozone in chemistry-climate model simulations. Atmos. Chem. Phys., 10, 13851400.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., 2010: The end of model democracy? Climatic Change, 102, 395404, doi:10.1007/s10584-010-9800-2.

  • Knutti, R., G. Abramowitz, M. Collins, V. Eyring, P. J. Gleckler, B. Hewitson, and L. Mearns, 2010a: Good practice guidance paper on assessing and combining multi model climate projections. IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections Meeting Rep., 13 pp.

  • Knutti, R., R. Furrer, C. Tebaldi, J. Cermak, and G. A. Meehl, 2010b: Challenges in combining projections from multiple climate models. J. Climate, 23, 27392758.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., D. E. Kinnison, P. G. Hess, and F. M. Vitt, 2008: Simulated lower stratospheric trends between 1970 and 2005: Identifying the role of climate and composition changes. J. Geophys. Res., 113, D12301, doi:10.1029/2007JD009277.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2012: Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys. Res. Lett., 39, L06706, doi:10.1029/2012GL051210.

    • Search Google Scholar
    • Export Citation
  • Masson, D., and R. Knutti, 2011: Climate model genealogy. Geophys. Res. Lett., 38, L08703, doi:10.1029/2011GL046864.

  • Miller, A. J., and Coauthors, 2002: A cohesive total ozone data set from SBUV(/2) satellite system. J. Geophys. Res., 107, 4701, doi:10.1029/2001JD000853.

    • Search Google Scholar
    • Export Citation
  • Morgenstern, O., P. Braesicke, F. M. O’Connor, A. C. Bushell, C. E. Johnson, S. M. Osprey, and J. A. Pyle, 2009: Evaluation of the new UKCA climate-composition model. Part 1: The stratosphere. Geosci. Model Dev., 1, 4357.

    • Search Google Scholar
    • Export Citation
  • Morgenstern, O., and Coauthors, 2010: Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings. J. Geophys. Res., 115, D00M02, doi:10.1029/2009JD013728.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772, doi:10.1038/nature02771.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., J. S. Daniel, D. W. Waugh, and E. R. Nash, 2007: A new formulation of equivalent effective stratospheric chlorine (EESC). Atmos. Chem. Phys., 7, 45374552, doi:10.5194/acp-7-4537-2007.

    • Search Google Scholar
    • Export Citation
  • Nissen, K. M., K. Matthes, U. Langematz, and B. Mayer, 2007: Towards a better representation of the solar cycle in general circulation models. Atmos. Chem. Phys., 7, 53915400, doi:10.5194/acp-7-5391-2007.

    • Search Google Scholar
    • Export Citation
  • Oman, L. D., and Coauthors, 2010: Multi-model assessment of the factors driving the ozone evolution over the 21st century. J. Geophys. Res., 115, D24306, doi:10.1029/2010JD014362.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., R. S. Stolarski, A. R. Douglass, P. A. Newman, J. E. Nielsen, S. M. Frith, and M. L. Gupta, 2008: Goddard Earth Observing System chemistry-climate model simulations of stratospheric ozone-temperature coupling between 1950 and 2005. J. Geophys. Res., 113, D12103, doi:10.1029/2007JD009511.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., S. Pawson, R. L. Fogt, J. E. Nielsen, and W. D. Neff, 2008: Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett., 35, L08714, doi:10.1029/2008GL033317.

    • Search Google Scholar
    • Export Citation
  • Pitari, G., E. Mancini, V. Rizi, and D. Shindell, 2002: Impact of future climate and sulfur emission changes on stratospheric aerosols and ozone. J. Atmos. Sci., 59, 414440.

    • Search Google Scholar
    • Export Citation
  • Räisänen, J., L. Ruokolainen, and J. Ylhäisi, 2010: Weighting of model results for improving best estimates of climate change. Climate Dyn., 35, 407422.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303311.

  • Schraner, M., and Coauthors, 2008: Technical Note: Chemistry-climate model SOCOL: version 2.0 with improved transport and chemistry/microphysics schemes. Atmos. Chem. Phys., 8, 59575974, doi:10.5194/acp-8-5957-2008.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: Technical note: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., D. B. Stephenson, T. C. Bailey, and J. Austin, 2010: Estimates of past and future ozone trends from multi-model simulations using a flexible smoothing spline methodology. J. Geophys. Res., 115, D00M12, doi:10.1029/2009JD013622.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., and M. Deushi, 2005: Partitioning between resolved wave forcing and unresolved gravity wave forcing to the quasi-biennial oscillation as revealed with a coupled chemistry-climate model. Geophys. Res. Lett., 32, L12820, doi:10.1029/2005GL022885.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., and M. Deushi, 2008a: Long-term variations and trends in the simulation of the middle atmosphere 1980–2004 by the chemistry-climate model of the Meteorological Research Institute. Ann. Geophys., 26, 12991326.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., and M. Deushi, 2008b: Simulation of the stratospheric circulation and ozone during the recent past (1980–2004) with the MRI Chemistry-Climate Model. CGER’s Supercomputer Monograph Rep. 13, 154 pp.

  • Son, S.-W., and Coauthors, 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271.

    • Search Google Scholar
    • Export Citation
  • Stenke, A., M. Dameris, V. Grewe, and H. Garny, 2009: Implications of Lagrangian transport for coupled chemistry-climate simulations. Atmos. Chem. Phys., 9, 54895504.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., and S. Frith, 2006: Search for evidence of trend slowdown in the long-term TOMS/SBUV total ozone data record: The importance of instrument drift uncertainty. Atmos. Chem. Phys., 6, 40574065.

    • Search Google Scholar
    • Export Citation
  • Strahan, S. E., and Coauthors, 2011: Using transport diagnostics to understand chemistry climate model ozone simulations. J. Geophys. Res., 116, D17302, doi:10.1029/2010JD015360.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, A365, 20532075.

    • Search Google Scholar
    • Export Citation
  • Teyssédre, H., and Coauthors, 2007: A new tropospheric and stratospheric Chemistry and Transport Model MOCAGE-Climat for multi-year studies: Evaluation of the present-day climatology and sensitivity to surface processes. Atmos. Chem. Phys., 7, 58155860, doi:10.5194/acp-7-5815-2007.

    • Search Google Scholar
    • Export Citation
  • Tian, W., and M. P. Chipperfield, 2005: A new coupled chemistry-climate model for the stratosphere: The importance of coupling for future O3-climate predictions. Quart. J. Roy. Meteor. Soc., 131, 281303.

    • Search Google Scholar
    • Export Citation
  • Tian, W., M. P. Chipperfield, L. J. Gray, and J. M. Zawodny, 2006: Quasi-biennial oscillation and tracer distributions in a coupled chemistry-climate model. J. Geophys. Res., 111, D20301, doi:10.1029/2005JD006871.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.

  • Waugh, D. W., and V. Eyring, 2008: Quantitative performance metrics for stratospheric-resolving chemistry-climate models. Atmos. Chem. Phys., 8, 56995713.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., R. Knutti, M. A. Liniger, and C. Appenzeller, 2010: Risks of model weighting in multimodel climate projections. J. Climate, 23, 41754191.

    • Search Google Scholar
    • Export Citation
  • Whetton, P., I. Macadam, J. Bathols, and J. O’Grady, 2007: Assessment of the use of current climate patterns to evaluate regional enhanced greenhouse response patterns of climate models. Geophys. Res. Lett., 34, L14701, doi:10.1029/2007GL030025.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 59, Academic Press, 627 pp.

  • WMO, 2003: Scientific assessment of ozone depletion: 2002. World Meteorological Organization Global Ozone Research and Monitoring Project Rep. 47, 498 pp.

  • WMO, 2007: Scientific assessment of ozone depletion: 2006. World Meteorological Organization Global Ozone Research and Monitoring Project Rep. 50, 572 pp.

  • WMO, 2011: Scientific assessment of ozone depletion: 2010. World Meteorological Organization Global Ozone Research and Monitoring Project Rep. 52, 516 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 768 413 112
PDF Downloads 280 63 1