On the Origin and Impact of a Polygonal Eyewall in the Rapid Intensification of Hurricane Wilma (2005)

Konstantinos Menelaou Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Konstantinos Menelaou in
Current site
Google Scholar
PubMed
Close
,
M. K. Yau Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by M. K. Yau in
Current site
Google Scholar
PubMed
Close
, and
Yosvany Martinez Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Yosvany Martinez in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

An analysis of a high-resolution dataset from a realistic simulation of Hurricane Wilma (2005) was performed to understand the mechanism for the formation of a prominent polygonal eyewall and mesovortices during the rapid intensifying stage of the hurricane. The impact of these asymmetries on the intensity change of the hurricane vortex was assessed using the empirical normal mode (ENM) method and Eliassen–Palm (EP) flux calculations.

The results indicated that the eyewall of Wilma exhibited an early azimuthal wavenumber-4 (m = 4) asymmetry followed by a transition to lower-wavenumber asymmetries. The simulated reflectivity and the spatial structure of potential vorticity (PV) anomalies strongly suggest that barotropic instability is the most likely driving mechanism for these asymmetries. From the ENM analysis, it was found that the dominant modes for m = 4 and m = 3 asymmetries are vortex Rossby waves (VRWs) that possess characteristics of unstable modes, supporting the importance of barotropic instability. The EP flux calculations associated with these modes indicate that the VRWs act to decelerate the flow at the initial radius of maximum wind while they act to accelerate the flow radially inside and outside of this location, suggesting that VRWs may provide a positive impact to the intensification of the vortex.

The present results complement previous findings of theoretical and highly idealized numerical studies that a polygonal eyewall and mesovortices are the result of barotropic instability, thereby furnishing a bridge between idealized studies and observations. The work also provides new insight on the role of asymmetries and VRWs in the intensification of hurricanes.

Corresponding author address: Konstantinos Menelaou, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada. E-mail: konstantinos.menelaou@mail.mcgill.ca

Abstract

An analysis of a high-resolution dataset from a realistic simulation of Hurricane Wilma (2005) was performed to understand the mechanism for the formation of a prominent polygonal eyewall and mesovortices during the rapid intensifying stage of the hurricane. The impact of these asymmetries on the intensity change of the hurricane vortex was assessed using the empirical normal mode (ENM) method and Eliassen–Palm (EP) flux calculations.

The results indicated that the eyewall of Wilma exhibited an early azimuthal wavenumber-4 (m = 4) asymmetry followed by a transition to lower-wavenumber asymmetries. The simulated reflectivity and the spatial structure of potential vorticity (PV) anomalies strongly suggest that barotropic instability is the most likely driving mechanism for these asymmetries. From the ENM analysis, it was found that the dominant modes for m = 4 and m = 3 asymmetries are vortex Rossby waves (VRWs) that possess characteristics of unstable modes, supporting the importance of barotropic instability. The EP flux calculations associated with these modes indicate that the VRWs act to decelerate the flow at the initial radius of maximum wind while they act to accelerate the flow radially inside and outside of this location, suggesting that VRWs may provide a positive impact to the intensification of the vortex.

The present results complement previous findings of theoretical and highly idealized numerical studies that a polygonal eyewall and mesovortices are the result of barotropic instability, thereby furnishing a bridge between idealized studies and observations. The work also provides new insight on the role of asymmetries and VRWs in the intensification of hurricanes.

Corresponding author address: Konstantinos Menelaou, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada. E-mail: konstantinos.menelaou@mail.mcgill.ca
Save
  • Abarca, S. F., and K. L. Corbosiero, 2011: Secondary eyewall formation in WRF simulations of Hurricanes Rita and Katrina (2005). Geophys. Res. Lett.,38, L07802, doi:10.1029/2011GL047015.

  • Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947957.

  • Black, P. G., and F. D. Marks, 1991: The structure of an eyewall meso-vortex in Hurricane Hugo (1989). Preprints, 19th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 579–582.

  • Brunet, G., 1994: Empirical normal mode analysis of atmospheric data. J. Atmos. Sci., 51, 932952.

  • Charron, M., and G. Brunet, 1999: Gravity wave diagnosis using empirical normal modes. J. Atmos. Sci., 56, 27062727.

  • Chen, Y., and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58, 21282145.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., G. Brunet, and M. K. Yau, 2003: Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics. J. Atmos. Sci., 60, 12391256.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., J. Molinari, A. R. Aiyyer, and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 30733091.

    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 33803403.

  • Held, I. M., 1985: Pseudomomentum and the orthogonality of modes in shear flows. J. Atmos. Sci., 42, 22802288.

  • Hendricks, E. A., and W. H. Schubert, 2010: Adiabatic rearrangement of hollow PV towers. J. Adv. Model. Earth Syst.,2 (4), doi:10.3894/JAMES.2010.2.8.

  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., W. H. Schubert, R. K. Taft, H. Wang, and J. P. Kossin, 2009: Life cycles of hurricane-like vorticity rings. J. Atmos. Sci., 66, 705722.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., B. D. McNoldy, and W. H. Schubert, 2012: Observed inner-core structural variability in Hurricane Dolly (2008). Mon. Wea. Rev., 140, 40664077.

    • Search Google Scholar
    • Export Citation
  • Hodyss, D., and D. S. Nolan, 2007: Linear anelastic equations for atmospheric vortices. J. Atmos. Sci., 64, 29472959.

  • Hodyss, D., and D. S. Nolan, 2008: The Rossby-inertia-buoyancy instability in baroclinic vortices. Phys. Fluids,20, 096602, doi:10.1063/1.2980354.

  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 12871311.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., B. D. McNoldy, and W. H. Schubert, 2002: Vortical swirls in hurricane eye clouds. Mon. Wea. Rev., 130, 31443149.

  • Lewis, B. M., and H. F. Hawkins, 1982: Polygonal eye walls and rainbands in hurricanes. Bull. Amer. Meteor. Soc., 63, 12941300.

  • Li, Q., and Y. Wang, 2012: A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone. Mon. Wea. Rev., 140, 27822805.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., D.-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 25972616.

    • Search Google Scholar
    • Export Citation
  • Martinez, Y. H., G. Brunet, and M. K. Yau, 2010: On the dynamics of two-dimensional hurricane-like vortex symmetrization. J. Atmos. Sci., 67, 35593580.

    • Search Google Scholar
    • Export Citation
  • Martinez, Y. H., G. Brunet, M. K. Yau, and X. Wang, 2011: On the dynamics of concentric eyewall genesis: Space–time empirical normal modes diagnosis. J. Atmos. Sci., 68, 457476.

    • Search Google Scholar
    • Export Citation
  • McAdie, C., and M. B. Lawrence, 2000: Improvements in tropical cyclone track forecasting in the Atlantic basin, 1970–98. Bull. Amer. Meteor. Soc., 81, 989998.

    • Search Google Scholar
    • Export Citation
  • Menelaou, K., M. K. Yau, and Y. Martinez, 2012: On the dynamics of the secondary eyewall genesis in Hurricane Wilma (2005). Geophys. Res. Lett.,39, L04801, doi:10.1029/2011GL050699.

  • Menelaou, K., M. K. Yau, and Y. Martinez, 2013: Impact of asymmetric dynamical processes on the structure and intensity change of two-dimensional hurricane-like annular vortices. J. Atmos. Sci., 70, 559582.

    • Search Google Scholar
    • Export Citation
  • Molinari, J. S., S. Skubis, and D. Vollaro, 1995: External influences on hurricane intensity. Part III: Potential vorticity evolution. J. Atmos. Sci., 52, 35933606.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and L. J. Shapiro, 1995: Generalized Charney–Stern and Fjortoft theorems for rapidly rotating vortices. J. Atmos. Sci., 52, 18291833.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Moon, Y., and D. S. Nolan, 2012: Spiral rainband propagation: Vortex-Rossby waves vs. tropical squall lines. Preprints, 30th Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra Beach, FL, Amer. Meteor. Soc., 8C.8. [Available online at https://ams.confex.com/ams/30Hurricane/webprogram/Paper205457.html.]

  • Muramatsu, T., 1986: The structure of polygonal eye of a typhoon. J. Meteor. Soc. Japan, 64, 913921.

  • Nguyen, V. S., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and B. F. Farrell, 1999: Generalized stability analyses of asymmetric disturbances in one- and two-celled vortices maintained by radial inflow. J. Atmos. Sci., 56, 12821307.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59, 29893020.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and L. D. Grasso, 2003: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 27122745.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369379.

  • Persing, J., M. T. Montgomery, J. C. McWilliams, and R. K. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys. Discuss., 13, 13 32313 438, doi:10.5194/acpd-13-13323-2013.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., J. P. Kossin, W. H. Schubert, and P. J. Mulero, 2009: Internal control of hurricane intensity variability: The dual nature of potential vorticity mixing. J. Atmos. Sci., 66, 133147.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2007: Waves in a cloudy vortex. J. Atmos. Sci., 64, 314337.

  • Schubert, W. H., 1985: Wave, mean-flow interactions, and hurricane development. Preprints, 16th Conf. on Hurricanes and Tropical Meteorology, Houston, TX, Amer. Meteor. Soc., 140–141.

  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 12131238.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 12391262.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273.

  • Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257278.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1978a: A possible mechanism for the formation of hurricane rainbands. J. Atmos. Sci., 35, 838848.

  • Willoughby, H. E., 1978b: The vertical structure of hurricane rainbands and their interaction with the mean vortex. J. Atmos. Sci., 35, 849858.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411.

    • Search Google Scholar
    • Export Citation
  • Yang, B., Y. Wang, and B. Wang, 2007: The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J. Atmos. Sci., 64, 11651188.

    • Search Google Scholar
    • Export Citation
  • Yau, M. K., Y. Liu, D.-L. Zhang, and Y. Chen, 2004: A multiscale numerical study of Hurricane Andrew (1992). Part VI: Small-scale inner-core structures and wind streaks. Mon. Wea. Rev., 132, 14101433.

    • Search Google Scholar
    • Export Citation
  • Zadra, A., G. Brunet, and J. Derome, 2002: An empirical normal mode diagnostic algorithm applied to NCEP reanalysis. J. Atmos. Sci., 59, 28112829.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., K. Menelaou, and Z. Zhenduo, 2013: Impact of sub-grid scale vertical turbulent mixing on eyewall asymmetric structures and mesovortices of hurricanes. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2147, in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 743 456 102
PDF Downloads 238 56 4