• Cangialosi, J. P., , and J. L. Franklin, 2012: 2011 National Hurricane Center verification report. Tropical Prediction Center, National Hurricane Center, National Center for Environmental Prediction, National Weather Center, NOAA, 76 pp. [Available at http://origin.www.nhc.noaa.gov/verification/pdfs/Verification_2011.pdf.]

  • Davis, C. A., , S. C. Jones, , and M. Riemer, 2008: Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714736.

    • Search Google Scholar
    • Export Citation
  • Deng, Q., , L. Smith, , and A. J. Majda, 2012: Tropical cyclogenesis and vertical shear in a moist Boussinesq model. J. Fluid Mech., 706, 384–412.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., and Coauthors, 2008: Prediction of Atlantic tropical cyclones with the Advanced Hurricane WRF (AHW) model. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 18A.2. [Available online at https://ams.confex.com/ams/28Hurricanes/techprogram/paper_138004.htm.]

  • Dunion, J. P., , and C. S. Marron, 2008: A reexamination of the Jordan mean tropical sounding based on awareness of the Saharan air layer: Results from 2002. J. Climate, 21, 52425253.

    • Search Google Scholar
    • Export Citation
  • Fang, J., , and F. Zhang, 2012: Effect of beta shear on simulated tropical cyclones. Mon. Wea. Rev., 140, 33273346.

  • Hong, S.-Y., , and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., , M. T. Montgomery, , and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 38693885.

  • Nguyen, V. S., , R. K. Smith, , and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point downscaling. J. Adv. Model. Earth Syst.,3, M08001, doi:10.1029/2011MS000063.

  • Nolan, D. S., , and M. G. McGauley, 2012: Tropical cyclogenesis in wind shear: Climatological relationships and physical processes. Cyclones: Formation, Triggers and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers, 1–34.

  • Qiu, X., , and Z.-M. Tan, 2010: The role of vortex Rossby waves in hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 20922109.

    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., , and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 138, 10351054, doi:10.1002/qj.977.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., , D. S. Nolan, , J. P. Kossin, , F. Zhang, , and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci.,69, 2621–2643.

  • Sippel, J. A., , and F. Zhang, 2008: A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65, 34403459.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., , and F. Zhang, 2010: Factors affecting the predictability of Hurricane Humberto (2007). J. Atmos. Sci., 67, 17591778.

  • Tang, B., , and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830.

  • Terwey, W. D., , and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112, doi:10.1029/2007JD008897.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., , and D. S. Nolan, 2012: Observational undersampling in tropical cyclones and implications for estimated intensity. Mon. Wea. Rev., 140, 825840.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961.

  • Zhang, F., , C. Snyder, , and R. Rotunno, 2002: Mesoscale predictability of the “surprise” snowstorm of 24–25 January 2000. Mon. Wea. Rev., 130, 16171632.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , C. Snyder, , and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 11731185.

  • Zhang, F., , N. Bei, , R. Rotunno, , C. Snyder, , and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 35793594.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , Y. Weng, , J. F. Gamache, , and F. D. Marks, 2011: Performance of cloud-resolving hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38, L15810, doi:10.1029/2011GL048469.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 226 50
PDF Downloads 182 182 39

Effects of Vertical Wind Shear on the Predictability of Tropical Cyclones

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

Through cloud-resolving simulations, this study examines the effect of vertical wind shear and system-scale flow asymmetry on the predictability of tropical cyclone (TC) intensity during different stages of the TC life cycle. A series of ensemble experiments is performed with varying magnitudes of vertical wind shear, each initialized with an idealized weak TC-like vortex, with small-scale, small-amplitude random perturbations added to the initial conditions. It is found that the environmental shear can significantly affect the intrinsic predictability of tropical cyclones, especially during the formation and rapid intensification stage. The larger the vertical wind shear, the larger the uncertainty in the intensity forecast, primarily owing to the difference in the timing of rapid intensification.

In the presence of environmental shear, initial random noise may result in changes in the timing of rapid intensification by as much as 1–2 days through the randomness (and chaotic nature) of moist convection. Upscale error growth from differences in moist convection first alters the tilt amplitude and angle of the incipient tropical storms, which leads to significant differences in the timing of precession and vortex alignment. During the precession process, both the vertical tilt of the storm and the effective (local) vertical wind shear are considerably decreased after the tilt angle reaches 90° to the left of the environmental shear. The tropical cyclone intensifies immediately after the tilt and the effective local shear reach their minima. In some instances, small-scale, small-amplitude random noise may also limit the intensity predictability through altering the timing and strength of the eyewall replacement cycle.

Corresponding author address: Fuqing Zhang, Department of Meteorology, The Pennsylvania State University, University Park, PA 16802. E-mail: fzhang@psu.edu

Abstract

Through cloud-resolving simulations, this study examines the effect of vertical wind shear and system-scale flow asymmetry on the predictability of tropical cyclone (TC) intensity during different stages of the TC life cycle. A series of ensemble experiments is performed with varying magnitudes of vertical wind shear, each initialized with an idealized weak TC-like vortex, with small-scale, small-amplitude random perturbations added to the initial conditions. It is found that the environmental shear can significantly affect the intrinsic predictability of tropical cyclones, especially during the formation and rapid intensification stage. The larger the vertical wind shear, the larger the uncertainty in the intensity forecast, primarily owing to the difference in the timing of rapid intensification.

In the presence of environmental shear, initial random noise may result in changes in the timing of rapid intensification by as much as 1–2 days through the randomness (and chaotic nature) of moist convection. Upscale error growth from differences in moist convection first alters the tilt amplitude and angle of the incipient tropical storms, which leads to significant differences in the timing of precession and vortex alignment. During the precession process, both the vertical tilt of the storm and the effective (local) vertical wind shear are considerably decreased after the tilt angle reaches 90° to the left of the environmental shear. The tropical cyclone intensifies immediately after the tilt and the effective local shear reach their minima. In some instances, small-scale, small-amplitude random noise may also limit the intensity predictability through altering the timing and strength of the eyewall replacement cycle.

Corresponding author address: Fuqing Zhang, Department of Meteorology, The Pennsylvania State University, University Park, PA 16802. E-mail: fzhang@psu.edu
Save