• Aquila, V., , L. D. Oman, , R. S. Stolarski, , P. R. Colarco, , and P. A. Newman, 2012: Dispersion of the volcanic sulfate cloud from a Mount Pinatubo–like eruption. J. Geophys. Res., 117, D06216, doi:10.1029/2011JD016968.

    • Search Google Scholar
    • Export Citation
  • Bluth, G. J. S., , S. D. Doiron, , C. C. Schnetzler, , A. J. Krueger, , and L. S. Walter, 1992: Global tracking of the SO2 cloud from the June, 1991 Mount Pinatubo eruptions. Geophys. Res. Lett., 19, 151154, doi:10.1029/91GL02792.

    • Search Google Scholar
    • Export Citation
  • Clerbaux, C., and Coauthors, 2007: Long-lived compounds. Scientific assessment of ozone depletion: 2006, World Meteorological Organization Global Ozone Research and Monitoring Project Rep. 50, 1–64.

  • Colarco, P., , A. Da Silva, , M. Chin, , and T. Diehl, 2010: Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res., 115, D14207, doi:10.1029/2009JD012820.

    • Search Google Scholar
    • Export Citation
  • Danilin, M. Y., and Coauthors, 1999: Nitrogen species in the post-Pinatubo stratosphere: Model analysis utilizing UARS measurements. J. Geophys. Res., 104 (D7), 82478262.

    • Search Google Scholar
    • Export Citation
  • Douglass, A., and Coauthors, 2011: Stratospheric ozone and surface ultraviolet radiation. Scientific assessment of ozone depletion: 2010, World Meteorological Organization Global Ozone Research and Monitoring Project Rep. 52, 1–76.

  • Eyring, V., and Coauthors, 2008: Overview of the new CCMVal reference and sensitivity simulations in support of upcoming ozone and climate assessments and the planned SPARC CCMVal Report. SPARC Newsletter, No. 30, World Climate Research Program, Geneva, Switzerland, 20–26.

  • Fahey, D. W., and Coauthors, 1993: In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion. Nature, 363, 509514, doi:10.1038/363509a0.

    • Search Google Scholar
    • Export Citation
  • Fleming, E. L., , C. H. Jackman, , D. K. Weisenstein, , and M. K. W. Ko, 2007: The impact of interannual variability on multidecadal total ozone simulations. J. Geophys. Res., 112, D10310, doi:10.1029/2006JD007953.

    • Search Google Scholar
    • Export Citation
  • Graf, H.-F., , I. Kirchner, , A. Robock, , and I. Schult, 1993: Pinatubo eruption winter climate effects: Model versus observations. Climate Dyn., 9, 8193, doi:10.1007/BF00210011.

    • Search Google Scholar
    • Export Citation
  • Herman, J. R., and Coauthors, 1996: Meteor-3 Total Ozone Mapping Spectrometer (TOMS) data products user’s guide. NASA Reference Publ. 1393, 55 pp.

  • Johnston, P. V., , and R. L. McKenzie, 1984: Long-path absorption-measurements of tropospheric NO2 in rural New Zealand. Geophys. Res. Lett., 11, 6972.

    • Search Google Scholar
    • Export Citation
  • Johnston, P. V., , R. L. McKenzie, , J. G. Keys, , and W. A. Matthews, 1992: Observations of deplete stratospheric NO2 following the Pinatubo volcanic eruption. Geophys. Res. Lett., 19, 211213.

    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Y., , N. P. Gillett, , M. Dall’Amico, , and L. J. Gray, 2010: Southern Hemisphere atmospheric circulation response to the El Chichón and Pinatubo eruptions in coupled climate models. Quart. J. Roy. Meteor. Soc., 136, 18131822, doi:10.1002/qj.683.

    • Search Google Scholar
    • Export Citation
  • Kinne, S., , O. B. Toon, , and M. J. Prather, 1992: Buffering of stratospheric circulation by changing amounts of tropical ozone—A Pinatubo study. Geophys. Res. Lett., 19, 19271930.

    • Search Google Scholar
    • Export Citation
  • Kinnison, D. E., , K. E. Grant, , P. S. Connell, , D. A. Rotman, , and J. D. Wuebbles, 1994: The chemical and radiative effects of the Mount Pinatubo eruption. J. Geophys. Res., 99 (D12), 25 70525 731.

    • Search Google Scholar
    • Export Citation
  • Koike, M., , N. B. Jones, , W. A. Matthews, , P. V. Johnston, , R. L. McKenzie, , D. Kinnison, , and J. Rodriguez, 1994: Impact of Pinatubo aerosols on the partitioning between NO2 and HNO3. Geophys. Res. Lett., 21, 597–600, doi:10.1029/94GL00303.

    • Search Google Scholar
    • Export Citation
  • McCormick, M. P., , and R. E. Veiga, 1992: SAGE-II measurements of early Pinatubo aerosols. Geophys. Res. Lett., 19, 155158, doi:10.1029/91GL02790.

    • Search Google Scholar
    • Export Citation
  • McCormick, M. P., , L. W. Thomason, , and C. R. Trepte, 1995: Atmospheric effects of the Mt Pinatubo eruption. Nature, 373, 399404, doi:10.1038/373399a0.

    • Search Google Scholar
    • Export Citation
  • McPeters, R. D., and Coauthors, 1996: Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data products user’s guide. NASA Reference Publ. 1384, 67 pp.

  • Pawson, S., , R. S. Stolarski, , A. R. Douglass, , P. A. Newman, , J. E. Nielsen, , S. M. Frith, , and M. L. Gupta, 2008: Goddard Earth Observing System chemistry-climate model simulations of stratospheric ozone-temperature coupling between 1950 and 2005. J. Geophys. Res., 113, D12103, doi:10.1029/2007JD009511.

    • Search Google Scholar
    • Export Citation
  • Pitari, G., , and E. Mancini, 2002: Short-term climatic impact of the 1991 volcanic eruption of Mt. Pinatubo and effects on atmospheric tracers. Nat. Hazards Earth Syst. Sci., 2, 91108, doi:10.5194/nhess-2-91-2002.

    • Search Google Scholar
    • Export Citation
  • Poberaj, C. S., , J. Staehelin, , and D. Brunner, 2011: Missing stratospheric ozone decrease at Southern Hemisphere middle latitudes after Mt. Pinatubo: A dynamical perspective. J. Atmos. Sci., 68, 19221945.

    • Search Google Scholar
    • Export Citation
  • Portmann, R. W., , S. Solomon, , R. R. Garcia, , L. W. Thomason, , L. R. Poole, , and M. P. McCormick, 1996: Role of aerosol variations in anthropogenic ozone depletion in the polar regions. J. Geophys. Res., 101 (D17), 22 99123 006.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and F. Wu, 1996: Isolation of the ozone QBO in SAGE II data by singular-value decomposition. J. Atmos. Sci., 53, 25462559.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , F. Wu, , J. M. Russell III, , J. W. Waters, , and L. Froidevaux, 1995: Ozone and temperature changes in the stratosphere following the eruption of Mount Pinatubo. J. Geophys. Res., 100 (D8), 16 75316 764.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. S. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. Series on Global Modeling and Data Assimilation NASA/TM-2008-104606, Vol. 27, 101 pp.

  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219.

  • Robock, A., , and J. Mao, 1992: Winter warming from large volcanic eruptions. Geophys. Res. Lett., 19, 24052408, doi:10.1029/92GL02627.

    • Search Google Scholar
    • Export Citation
  • Robock, A., , T. Adams, , M. Moore, , L. Oman, , and G. Stenchikov, 2007: Southern Hemisphere atmospheric circulation effects of the 1991 Mount Pinatubo eruption. Geophys. Res. Lett., 34, L23710, doi:10.1029/2007GL031403.

    • Search Google Scholar
    • Export Citation
  • Rodriguez, J. M., , M. K. W. Ko, , and N. D. Sze, 1991: Role of heterogeneous conversion of N2O5 on sulphate aerosols in global ozone losses. Nature, 352, 134137, doi:10.1038/352134a0.

    • Search Google Scholar
    • Export Citation
  • Rodriguez, J. M., , M. K. W. Ko, , N. D. Sze, , C. W. Heisey, , G. K. Yue, , and M. P. McCormich, 1994: Ozone response to enhanced heterogeneous processing after the eruption of Mt. Pinatubo. Geophys. Res. Lett., 21, 209212.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , R. W. Portmann, , R. R. Garcia, , L. W. Thomason, , L. R. Poole, , and M. P. McCormick, 1996: The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. J. Geophys. Res., 101 (D3), 67136727.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., , A. Robock, , V. Ramaswamy, , M. D. Schwarzkopf, , K. Hamilton, , and S. Ramachandran, 2002: Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion. J. Geophys. Res., 107, 4803, doi:10.1029/2002JD002090.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., , P. Bloomfield, , R. D. McPeters, , and J. R. Herman, 1991: Total ozone trends deduced from Nimbus 7 TOMS data. Geophys. Res. Lett., 18, 10151018.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., , A. R. Douglass, , S. Steenrod, , and S. Pawson, 2006: Trends in stratospheric ozone: Lessons learned from a 3D chemical transport model. J. Atmos. Sci., 63, 10281041.

    • Search Google Scholar
    • Export Citation
  • Tabazadeh, A., , K. Drdla, , M. Schoeberl, , P. Hamill, , and O. B. Toon, 2002: Arctic “ozone hole” in a cold volcanic stratosphere. Proc. Natl. Acad. Sci. USA, 99, 26092612, doi:10.1073/pnas.052518199.

    • Search Google Scholar
    • Export Citation
  • Telford, P., , P. Braesicke, , O. Morgenstern, , and J. Pyle, 2009: Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM. Atmos. Chem. Phys., 9, 42514260, doi:10.5194/acp-9-4251-2009.

    • Search Google Scholar
    • Export Citation
  • Thomason, L. W., , G. S. Kent, , C. R. Trepte, , and L. R. Poole, 1997: A comparison of the stratospheric aerosol background periods of 1979 and 1989–1991. J. Geophys. Res., 102 (D3), 36113616.

    • Search Google Scholar
    • Export Citation
  • Tie, X., , and G. Brasseur, 1995: The response of stratospheric ozone to volcanic eruptions: Sensitivity to atmospheric chlorine loading. Geophys. Res. Lett., 22, 30353038.

    • Search Google Scholar
    • Export Citation
  • Van Roozendael, M., and Coauthors, 1997: Ground-based observations of stratospheric NO2 at high and midlatitudes in Europe after the Mount Pinatubo eruption. J. Geophys. Res., 102, 19 17119 176.

    • Search Google Scholar
    • Export Citation
  • Wuebbles, D. J., , D. E. Kinnison, , K. E. Grant, , and J. Lean, 1991: The effect of solar flux variations and trace gas emissions on recent trends in stratospheric ozone and temperature. J. Geomagn. Geoelectr., 43, 709718.

    • Search Google Scholar
    • Export Citation
  • Zerefos, C. S., , K. Tourpali, , and A. F. Bais, 1994: Further studies on possible volcanic signal to the ozone layer. J. Geophys. Res., 99 (D12), 25 74125 746.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 121 121 44
PDF Downloads 84 84 32

The Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo at Southern and Northern Midlatitudes

View More View Less
  • 1 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • 2 NASA Goddard Space Flight Center, Greenbelt, and Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland
  • 3 NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

Observations have shown that the mass of nitrogen dioxide decreased at both southern and northern midlatitudes in the year following the eruption of Mt. Pinatubo, indicating that the volcanic aerosol had enhanced nitrogen dioxide depletion via heterogeneous chemistry. In contrast, the observed ozone response showed a northern midlatitude decrease and a small southern midlatitude increase. Previous simulations that included an enhancement of heterogeneous chemistry by the volcanic aerosol but no other effect of this aerosol produce ozone decreases in both hemispheres, contrary to observations. The authors’ simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and Southern Hemisphere extratropical downwelling. This enhanced extratropical downwelling, combined with the time of the eruption relative to the phase of the Brewer–Dobson circulation, increased Southern Hemisphere ozone via advection, counteracting the ozone depletion due to heterogeneous chemistry on the Pinatubo aerosol.

Corresponding author address: V. Aquila, NASA Goddard Space Flight Center, Code 614, Greenbelt, MD 20771. E-mail: valentina.aquila@nasa.gov

Abstract

Observations have shown that the mass of nitrogen dioxide decreased at both southern and northern midlatitudes in the year following the eruption of Mt. Pinatubo, indicating that the volcanic aerosol had enhanced nitrogen dioxide depletion via heterogeneous chemistry. In contrast, the observed ozone response showed a northern midlatitude decrease and a small southern midlatitude increase. Previous simulations that included an enhancement of heterogeneous chemistry by the volcanic aerosol but no other effect of this aerosol produce ozone decreases in both hemispheres, contrary to observations. The authors’ simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and Southern Hemisphere extratropical downwelling. This enhanced extratropical downwelling, combined with the time of the eruption relative to the phase of the Brewer–Dobson circulation, increased Southern Hemisphere ozone via advection, counteracting the ozone depletion due to heterogeneous chemistry on the Pinatubo aerosol.

Corresponding author address: V. Aquila, NASA Goddard Space Flight Center, Code 614, Greenbelt, MD 20771. E-mail: valentina.aquila@nasa.gov
Save