• Ajayamohan, R. S., , and B. N. Goswami, 2007: Dependence of simulation of boreal summer tropical intraseasonal oscillations on the simulation of seasonal mean. J. Atmos. Sci., 64, 460478.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., , and D. L. Hartmann, 1993: Tropical intraseasonal oscillation in a simple nonlinear model. J. Atmos. Sci., 50, 29222939.

  • Chang, C.-P., , and H. Lim, 1988: Kelvin wave-CISK: A possible mechanism for the 30–50 day oscillations. J. Atmos. Sci., 45, 17091720.

    • Search Google Scholar
    • Export Citation
  • CLIVAR MJO Working Group, 2009: MJO simulation diagnostics. J. Climate,22, 3006–3030.

  • Ferranti, L., , T. N. Palmer, , F. Molteni, , and K. Klinker, 1990: Tropical-extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 2002: Genesis of intraseasonal oscillations and equatorial waves. J. Atmos. Sci., 59, 27612781.

  • Frederiksen, J. S., , and C. S. Frederiksen, 1997: Mechanisms of the formation of intraseasonal oscillations and Australian monsoon disturbances: The roles of latent heat, barotropic and baroclinic instability. Contrib. Atmos. Phys., 70, 3956.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , B. Wang, , T. Li, , and J. P. McCreary, 2003: Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 17331753.

    • Search Google Scholar
    • Export Citation
  • Ge, X., , T. Li, , and X. Zhou, 2007: Tropical cyclone energy dispersion under vertical shear. Geophys. Res. Lett., 34, L23807, doi:10.1029/2007GL031867.

    • Search Google Scholar
    • Export Citation
  • Gustafson, W. I., Jr., , and B. C. Weare, 2004a: MM5 modeling of the Madden–Julian oscillation in the Indian and west Pacific Oceans: Model description and control run results. J. Climate, 17, 13201337.

    • Search Google Scholar
    • Export Citation
  • Gustafson, W. I., Jr., , and B. C. Weare, 2004b: MM5 modeling of the Madden–Julian oscillation in the Indian and west Pacific Oceans: Implications of 30–70 day boundary effects on MJO development. J. Climate, 17, 13381351.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1979: A generalized method of resolving transient disturbances into standing and traveling waves by space-time spectral analysis. J. Atmos. Sci., 36, 10171029.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and G.-Y. Yang, 2000: The equatorial response to higher-latitude forcing. J. Atmos. Sci., 57, 11971213.

  • Hsu, H. H., , B. J. Hoskins, , and F.-F. Jin, 1990: The 1985/86 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47, 823839.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., , and T. Li, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part II: Apparent heat and moisture sources and eddy momentum transport. J. Climate, 24, 942961.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., , and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., , and D. A. Randall, 1994: Low-frequency oscillations in radiative-convective systems. J. Atmos. Sci., 51, 10891099.

  • Hu, Q., , and D. A. Randall, 1995: Low-frequency oscillations in radiative-convective systems. Part II: An idealized model. J. Atmos. Sci., 52, 478490.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., , G. A. Meehl, , D. Bader, , T. L. Delworth, , B. Kirtman, , and B. Wielicki, 2009: A unified modeling approach to climate system prediction. Bull. Amer. Meteor. Soc., 90, 18191832.

    • Search Google Scholar
    • Export Citation
  • Inness, P. M., , J. M. Slingo, , E. Guilyardi, , and J. Cole, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16, 365382.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , T. Li, , and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , and J.-K. Schemn, 2000: The influence of intraseasonal variations on medium-range weather forecasts over South America. Mon. Wea. Rev., 128, 486494.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kemball-Cook, S. R., , and B. C. Weare, 2001: The onset of convection in Madden–Julian oscillation. J. Climate, 14, 780793.

  • Kemball-Cook, S. R., , B. Wang, , and X. Fu, 2002: Simulation of the intraseasonal oscillation in the ECHAM4 model: The impact of coupling with an ocean model. J. Atmos. Sci., 59, 14331453.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , B. Wang, , and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, doi:10.1007/s00382-011-1159-1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , H. von Storch, , and H. Loon, 1989: Origin of the South Pacific convergence zone. J. Climate, 2, 11851195.

  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436.

  • Kim, D., , A. H. Sobel, , E. D. Maloney, , D. M. W. Frierson, , and I.-S. Kang, 2011: A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Climate, 24, 55065520.

    • Search Google Scholar
    • Export Citation
  • Knutson, R. R., , and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 14071436.

    • Search Google Scholar
    • Export Citation
  • Knutson, R. R., , K. M. Weickmann, , and J. E. Kutzbach, 1986: Global-scale intraseasonal oscillations of outgoing longwave radiation and 250 mb zonal wind during Northern Hemisphere summer. Mon. Wea. Rev., 114, 605623.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950972.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , and D. E. Waliser, 2005: Intraseasonal Variability in the Atmosphere-Ocean Climate System. Praxis, 436 pp.

  • Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 10931102.

  • Li, T., 2010: Monsoon climate variabilities. Climate Dynamics: Why Does Climate Vary?, Geophys. Monogr., Vol. 189, Amer. Geophys. Union, 27–51, doi:10.1029/2008GM000782.

  • Li, T., , and C. Zhou, 2009: Planetary scale selection of the Madden–Julian oscillation. J. Atmos. Sci., 66, 24292443.

  • Li, T., , M. Kwon, , M. Zhao, , J.-S. Kug, , J.-J. Luo, , and W. Yu, 2010: Global warming shifts Pacific tropical cyclone location. Geophys. Res. Lett., 37, L21804, doi:10.1029/2010GL045124.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and D. L. Hartmann, 1984: An observational study of tropical–midlatitude interaction on intraseasonal time scale during winter. J. Atmos. Sci., 41, 33333350.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , G. Brunet, , and J. Derome, 2007: Intraseasonal variability in a dry atmospheric model. J. Atmos. Sci., 64, 24222441.

  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W.-B., , J. D. Neelin, , and N. Zeng, 2000: Maintenance of tropical intraseasonal variability: Impact of evaporation–wind feedback and midlatitude storms. J. Atmos. Sci., 57, 27932823.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and D. L. Hartmann, 2001: The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14, 20152034.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian Oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453.

  • Matthews, A. J., , and G. N. Kiladis, 1999: The tropical–extratropical interaction between high-frequency transients and the Madden–Julian oscillation. Mon. Wea. Rev., 127, 661677.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , and R. W. Higgins, 1998: Tropical convection and precipitation regimes in the western United States. J. Climate, 11, 24042423.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., , D. E. Waliser, , M. J. Miller, , M. A. Shapiro, , G. R. Asrar, , and J. Caugley, 2012: Multiscale convective organization and the YOTC virtual global field campaign. Bull. Amer. Meteor. Soc., 93, 11711187.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech. Memo. 206, 41 pp.

  • Pan, L.-L., , and T. Li, 2008: Interactions between the Tropical ISO and midlatitude low-frequency flow. Climate Dyn., 31, 375388, doi:10.1007/s00382-007-0272-7.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., , and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Ray, P., 2012: Mean state and the MJO in a high-resolution nested regional climate model. Atmospheric Model Applications, I. Yucel, Ed., InTech, 69–84.

  • Ray, P., , and C. Zhang, 2010: A case study of the mechanics of extratropical influence on the initiation of the Madden–Julian oscillation. J. Atmos. Sci., 67, 515528.

    • Search Google Scholar
    • Export Citation
  • Ray, P., , C. Zhang, , J. Dudhia, , and S. S. Chen, 2009: A numerical case study on the initiation of the Madden–Julian Oscillation. J. Atmos. Sci., 66, 310331.

    • Search Google Scholar
    • Export Citation
  • Ray, P., , C. Zhang, , M. W. Moncrieff, , J. Dudhia, , J. M. Caron, , L. R. Leung, , and C. Bruyere, 2011: Role of the atmospheric mean state on the initiation of the Madden-Julian oscillation in a tropical channel model. Climate Dyn., 36, 161184, doi:10.1007/s00382-010-0859-2.

    • Search Google Scholar
    • Export Citation
  • Ray, P., , C. Zhang, , J. Dudhia, , T. Li, , and M. W. Moncrieff, 2012: Tropical channel model. Climate Models, L. M. Druyan, Ed., InTech, 3–18.

  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max Planck Institute for Meteorology Rep. 218, 90 pp.

  • Roundy, P. E., 2012: Tropical extratropical interactions. Intraseasonal Variability in the Atmosphere-Ocean Climate System, 2nd ed. W. K. M. Lau and D. E. Waliser, Eds., Springer, 497–512.

  • Salby, M. L., , R. R. Garcia, , and H. H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51, 23442367.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., , and A. Kumar, 2008: The onset and life span of the Madden–Julian oscillation. Theor. Appl. Climatol., 94, 1324.

  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325357.

    • Search Google Scholar
    • Export Citation
  • Sooraj, K. P., , D. Kim, , J.-S. Kug, , S.-W. Yeh, , F.-F. Jin, , and I.-S. Kang, 2009: Effects of the low-frequency zonal wind variation on the high frequency atmospheric variability over the tropics. Climate Dyn., 33, 495507, doi:10.1007/s00382-008-0483-6.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. P., , S. Gualdi, , S. Legutke, , and V. Gayler, 2005: The Madden–Julian oscillation in ECHAM4 coupled and uncoupled general circulation models. Climate Dyn., 25, 117140.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale model. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Vincent, D. G., 1994: The South Pacific convergence zone (SPCZ): A review. Mon. Wea. Rev., 122, 19491970.

  • Vitart, F., , and T. Jung, 2010: Impact of the Northern Hemisphere extratropics on the skill in predicting the Madden Julian Oscillation. Geophys. Res. Lett., 37, L23805, doi:10.1029/2010GL045465.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and T. Li, 1994: Convective interaction with boundary layer dynamics in the development of the tropical intraseasonal signal. J. Atmos. Sci., 51, 13861400.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53, 449467.

    • Search Google Scholar
    • Export Citation
  • Wang, L., , K. Kodera, , and W. Chen, 2012: Observed triggering of tropical convection by a cold surge: Implications for MJO initiation. Quart. J. Roy. Meteor. Soc., 138, 17401750, doi:10.1002/qj.1905.

    • Search Google Scholar
    • Export Citation
  • Wang, L., , T. Li, , T. Zhou, , and X. Rong, 2013: Origin of the intraseasonal variability over the North Pacific in boreal summer. J. Climate, 26, 12111229.

    • Search Google Scholar
    • Export Citation
  • Webber, B. G. M., , A. J. Matthews, , K. J. Heywood, , and D. P. Stevens, 2012: Ocean Rossby waves as a triggering mechanism for primary Madden–Julian events. Quart. J. Roy. Meteor. Soc., 138, 514527.

    • Search Google Scholar
    • Export Citation
  • Wedi, N. P., , and P. K. Smolarkiewicz, 2010: A nonlinear perspective on the dynamics of the MJO: Idealized large-eddy simulations. J. Atmos. Sci., 67, 12021217.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K., , and E. Berry, 2009: The tropical Madden–Julian oscillation and the global wind oscillation. Mon. Wea. Rev., 137, 16011614.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , and M.-M. Lu, 1983: Equatorially trapped waves at 200 mb and their association with meridional convergence of wave energy flux. J. Atmos. Sci., 40, 27852803.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., , and M. Dong, 2004: Seasonality of the Madden–Julian oscillation. J. Climate, 17, 31693180.

  • Zhang, C., , M. Dong, , S. Gualdi, , H. H. Hendon, , E. D. Maloney, , A. Marshall, , K. R. Sperber, , and W. Wang, 2006: Simulations of the Madden–Julian oscillation by four pairs of coupled and uncoupled global models. Climate Dyn., 27, 573592, doi:10.1007/s00382-006-0148-2.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., , T. Li, , and T. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291307.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 80 80 18
PDF Downloads 28 28 9

Relative Roles of Circumnavigating Waves and Extratropics on the MJO and Its Relationship with the Mean State

View More View Less
  • 1 International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

A set of atmospheric general circulation model (GCM) experiments is designed to explore the relative roles of the circumnavigating waves and the extratropics on the Madden–Julian oscillation (MJO). In a “control” simulation, the model is forced by the climatological monthly sea surface temperature for 20 yr. In the first sensitivity experiment, model prognostic variables are relaxed in the tropical Atlantic region (20°S–20°N, 80°W–0°) toward the “controlled” climatological annual cycle to suppress the influences from the circumnavigating waves. In the second sensitivity experiment, model prognostic variables are relaxed in the 20°–30° latitude zones toward the controlled climatological annual cycle to suppress the influences from the extratropics (or the tropics–extratropics interactions). The numerical results demonstrate that the extratropics play a more important role in maintaining the MJO variance than the circumnavigating waves.

The simulations further show that both the tropical mean precipitation and the intraseasonal precipitation variability are reduced when the extratropical influences are suppressed. The in-phase relationship is primarily attributed to the effect of the mean state on perturbations. A moisture budget analysis indicates that a positive feedback to the mean precipitation by the anomalous moisture convergence is offset by a negative feedback due to the anomalous moisture advection. The change in the mean precipitation in the absence of extratropical influences is primarily determined by the change in the mean moisture convergence, which in turn is due to the change in circulation. This study is the first attempt to quantitatively separate the effects of the circumnavigating waves and the extratropics on the MJO. Implications and limitations of this study are discussed.

School of Ocean and Earth Science and Technology Contribution Number 8774 and International Pacific Research Center Contribution Number 925.

Current affiliation: Department of Marine and Environmental Systems, Florida Institute of Technology, Melbourne, Florida.

Corresponding author address: Dr. Pallav Ray, Department of Marine and Environmental Systems, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901. E-mail: pallavkrray@gmail.com

Abstract

A set of atmospheric general circulation model (GCM) experiments is designed to explore the relative roles of the circumnavigating waves and the extratropics on the Madden–Julian oscillation (MJO). In a “control” simulation, the model is forced by the climatological monthly sea surface temperature for 20 yr. In the first sensitivity experiment, model prognostic variables are relaxed in the tropical Atlantic region (20°S–20°N, 80°W–0°) toward the “controlled” climatological annual cycle to suppress the influences from the circumnavigating waves. In the second sensitivity experiment, model prognostic variables are relaxed in the 20°–30° latitude zones toward the controlled climatological annual cycle to suppress the influences from the extratropics (or the tropics–extratropics interactions). The numerical results demonstrate that the extratropics play a more important role in maintaining the MJO variance than the circumnavigating waves.

The simulations further show that both the tropical mean precipitation and the intraseasonal precipitation variability are reduced when the extratropical influences are suppressed. The in-phase relationship is primarily attributed to the effect of the mean state on perturbations. A moisture budget analysis indicates that a positive feedback to the mean precipitation by the anomalous moisture convergence is offset by a negative feedback due to the anomalous moisture advection. The change in the mean precipitation in the absence of extratropical influences is primarily determined by the change in the mean moisture convergence, which in turn is due to the change in circulation. This study is the first attempt to quantitatively separate the effects of the circumnavigating waves and the extratropics on the MJO. Implications and limitations of this study are discussed.

School of Ocean and Earth Science and Technology Contribution Number 8774 and International Pacific Research Center Contribution Number 925.

Current affiliation: Department of Marine and Environmental Systems, Florida Institute of Technology, Melbourne, Florida.

Corresponding author address: Dr. Pallav Ray, Department of Marine and Environmental Systems, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901. E-mail: pallavkrray@gmail.com
Save