• Ansmann, A., and Coauthors, 1993: Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: The 18 October case study and statistical analysis. J. Appl. Meteor., 32, 16081622.

    • Search Google Scholar
    • Export Citation
  • Bai, H. Z., , J. N. Xie, , and D. L. Li, 2001: The principal feature of Qinghai-Xizang Plateau monsoon variation in 40 years. Plateau Meteor., 20, 2227.

    • Search Google Scholar
    • Export Citation
  • Bai, H. Z., , Z. F. Ma, , and W. J. Dong, 2005: Relationship between Qinghai-Xizang Plateau region monsoon features and abnormal climate in china. Plateau Meteor., 16, 484491.

    • Search Google Scholar
    • Export Citation
  • Boehm, M. T., , J. Verlinde, , and T. P. Ackerman, 1999: On the maintenance of high tropical cirrus. J. Geophys. Res., 104 (D20), 24 42324 433.

    • Search Google Scholar
    • Export Citation
  • Chang, F.-L., , and Z. Li, 2005: A near-global climatology of single-layer and overlapped clouds and their optical properties retrieved from Terra/MODIS data using a new algorithm. J. Climate, 18, 47524771.

    • Search Google Scholar
    • Export Citation
  • Chen, B., , and X. Liu, 2005: Seasonal migration of cirrus clouds over the Asian Monsoon regions and the Tibetan Plateau measured from MODIS/Terra. Geophys. Res. Lett., 32, L01804, doi:10.1029/2004GL020868.

    • Search Google Scholar
    • Export Citation
  • Chen, W. N., , C. W. Chiang, , and J. B. Nee, 2002: Lidar ratio and depolarization ratio for cirrus clouds. Appl. Opt., 41, 64706476.

  • Clothiaux, E. E., , G. G. Mace, , T. P. Ackerman, , T. J. Kane, , J. D. Spinhirne, , and V. S. Scott, 1998: An automated algorithm for detection of hydrometeor returns in micropulse lidar data. J. Atmos. Oceanic Technol., 15, 10351042.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., , and K. Sassen, 2001: Retrieval of cirrus cloud radiative and backscattering properties using combined lidar and infrared radiometer (LIRAD) measurements. J. Atmos. Oceanic Technol., 18, 16581673.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., , and C. Jakob, 2004: Evaluation of tropical cirrus cloud properties derived from ECMWF model output and ground based measurements over Nauru Island. Geophys. Res. Lett., 31, L10106, doi:10.1029/2004GL019539.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., , T. P. Ackerman, , and G. G. Mace, 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107, 4714, doi:10.1029/2002JD002203.

    • Search Google Scholar
    • Export Citation
  • Das, S. K., , C. W. Chiang, , and J. B. Nee, 2009: Characteristics of cirrus clouds and its radiative properties based on lidar observation over Chung-Li, Taiwan. Atmos. Res., 93, 723735.

    • Search Google Scholar
    • Export Citation
  • Del Guasta, M., 2001: Simulation of LIDAR returns from pristine and deformed hexagonal ice prisms in cold cirrus clouds by means of “face tracing.” J. Geophys. Res., 106, 12 58912 602.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., , S. P. Palm, , W. D. Hart, , and J. D. Spinhirne, 2006: Tropopause-level thin cirrus coverage revealed by ICESat/Geoscience Laser Altimeter System. J. Geophys. Res., 111, D08203, doi:10.1029/2005JD006586.

    • Search Google Scholar
    • Export Citation
  • Eguchi, N., , T. Yokota, , and G. Inoue, 2007: Characteristics of cirrus clouds from ICESat/GLAS observations. Geophys. Res. Lett., 34, L09810, doi:10.1029/2007GL029529.

    • Search Google Scholar
    • Export Citation
  • Fahey, D. W., , and U. Schumann, 1999: Aviation-produced aerosols and cloudiness. Aviation and the Global Atmosphere, J. E. Penner et al., Eds., Cambridge University Press, 65–120.

  • Fernald, F. G., , B. M. Herman, , and J. A. Reagan, 1972: Determination of aerosol height distributions by lidar. J. Appl. Meteor., 11, 482489.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025.

  • Fu, Q., , M. Baker, , and D. L. Hartmann, 2002: Tropical cirrus and water vapor: An effective earth infrared iris feedback? Atmos. Chem. Phys., 2, 17.

    • Search Google Scholar
    • Export Citation
  • Fu, R., and Coauthors, 2006: Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc. Natl. Acad. Sci. USA, 103, 56645669.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., and Coauthors, 2009: Cirrus observations in the tropical tropopause layer over the western Pacific. J. Geophys. Res., 114, D09304, doi:10.1029/2008JD011040.

    • Search Google Scholar
    • Export Citation
  • Gao, B. C., , P. Yang, , G. Guo, , S. K. Park, , W. J. Wiscombe, , and B. Chen, 2003: Measurements of water vapor and high clouds over the Tibetan Plateau with the Terra MODIS instrument. IEEE Trans. Geosci. Remote Sens. Lett., 41, 895900.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., , D. E. Kinnison, , T. J. Dunkerton, , and G. P. Brasseur, 2004: Impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res., 109, D22101, doi:10.1029/2004JD004878.

    • Search Google Scholar
    • Export Citation
  • Giannakaki, E., , D. S. Balis, , V. Amiridis, , and S. Kazadzis, 2007: Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station. Atmos. Chem. Phys., 7, 55195530.

    • Search Google Scholar
    • Export Citation
  • Goldfarb, L., , P. Keckhut, , M. L. Chanin, , and A. Hauchecorne, 2001: Cirrus climatological results from lidar measurements at OHP (44°N, 6°E). Geophys. Res. Lett., 28, 19671690.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and C. M. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci., 41, 846855.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and G. M. McFarquhar, 2002: Mid-latitude and tropical cirrus. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 78–101.

  • Heymsfield, A. J., , G. M. McFarquhar, , W. D. Collins, , J. A. Goldstein, , F. P. J. Valero, , J. Spinhirne, , W. Hart, , and P. Pilewskie, 1998: Cloud properties leading to highly reflective tropical cirrus: Interpretations from CEPEX, TOGA COARE, and Kwajalein, Marshall Islands. J. Geophys. Res., 103 (D8), 88058812.

    • Search Google Scholar
    • Export Citation
  • Immler, F., , K. Kruger, , S. Tegtmeier, , M. Fujiwara, , P. Fortuin, , G. Verver, , and O. Schrems, 2007: Cirrus clouds, humidity, and dehydration in the tropical tropopause layer observed at Paramaribo, Suriname (5.8°N, 55.2°W). J. Geophys. Res., 112, D03209, doi:10.1029/2006JD007440.

    • Search Google Scholar
    • Export Citation
  • Immler, F., , R. Treffeisen, , D. Engelbart, , K. Kruger, , and O. Schrems, 2008: Cirrus, contrails, and ice supersaturated regions in high pressure systems at northern mid latitudes. Atmos. Chem. Phys., 8, 16891699.

    • Search Google Scholar
    • Export Citation
  • Jin, M. L., 2006: MODIS observed seasonal and interannual variations of atmospheric conditions associated with hydrological cycle over Tibetan Plateau. Geophys. Res. Lett., 33, L19707, doi:10.1029/2006GL026713.

    • Search Google Scholar
    • Export Citation
  • Kazimirovsky, E. S., , and G. K. Matafonov, 1998: Continental scale and orographic structures in the global distribution of the total ozone content. J. Atmos. Sol.-Terr. Phys., 60, 993995.

    • Search Google Scholar
    • Export Citation
  • Lakkis, S. G., , M. Lavorato, , and P. O. Canziani, 2009: Monitoring cirrus clouds with lidar in the Southern Hemisphere: A local study over Buenos Aires. 1. Tropopause heights. Atmos. Res., 92, 1826.

    • Search Google Scholar
    • Export Citation
  • Li, Q. B., and Coauthors, 2005: Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations. Geophys. Res. Lett., 32, L14826, doi:10.1029/2005GL022762.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 11671199.

  • Liu, X., , and B. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742.

  • Lynch, D., 2002: Cirrus history and definition. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 3–10.

  • Mace, G. G., , Q. Zhang, , M. A. Vaughan, , R. Marchand, , G. Stephens, , C. R. Trepte, , and D. M. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Massie, S., , A. Gettelman, , W. Randel, , and D. Baumgardner, 2002: Distribution of tropical cirrus in relation to convection. J. Geophys. Res., 107, 4591, doi:10.1029/2001JD001293.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , A. J. Heymsfield, , J. Spinhirne, , and B. Hart, 2000: Thin and subvisual tropopause tropical cirrus: Observations and radiative impact. J. Atmos. Sci., 57, 18411853.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., , H. Vömel, , D. N. Whiteman, , B. M. Lesht, , F. J. Schmidlin, , and F. Russo, 2006: Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J. Geophys. Res., 111, D09S10, doi:10.1029/2005JD006083.

    • Search Google Scholar
    • Export Citation
  • Noel, V., , D. M. Winker, , T. J. Garrett, , and M. McGill, 2007: Extinction coefficients retrieved in deep tropical ice clouds from lidar observations using a CALIPSO-like algorithm compared to in-situ measurements from the cloud integrating nephelometer during CRYSTAL-FACE. Atmos. Chem. Phys., 7, 14151422.

    • Search Google Scholar
    • Export Citation
  • Pace, G., , M. Cacciani, , A. di Sarra, , G. Fiocco, , and D. Fua, 2003: Lidar observations of equatorial cirrus clouds at Mahé Seychelles. J. Geophys. Res., 108, 4236, doi:10.1029/2002JD002710.

    • Search Google Scholar
    • Export Citation
  • Pan, L. L., , and L. A. Munchak, 2011: Relationship of cloud top to the tropopause and jet structure from CALIPSO data. J. Geophys. Res., 116, D12201, doi:10.1029/2010JD015462.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., , and Harshvardhan, 1988: Temperature dependence of cirrus extinction: Implications for climate feedback. J. Geophys. Res., 93 (D9), 11 05111 058.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., , S. A. Young, , P. J. Manson, , G. R. Patterson, , S. C. Marsden, , R. T. Austin, , and J. H. Churnside, 1998: The optical properties of equatorial cirrus from observations in the ARM pilot radiation observation experiment. J. Atmos. Sci., 55, 19771996.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., , S. A. Young, , R. T. Austin, , G. R. Patterson, , D. L. Mitchell, , and S. D. Miller, 2002: LIRAD observations of tropical cirrus clouds in MCTEX. Part I: Optical properties and detection of small particles in cold cirrus. J. Atmos. Sci., 59, 31453162.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., , and V. Ramanathan, 1989: Solar absorption by cirrus clouds and the maintenance of the tropical upper troposphere thermal structure. J. Atmos. Sci., 46, 22932310.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , Harshvardhan, , D. A. Dazlich, , and T. G. Gorsetti, 1989: Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46, 19431970.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and M. Park, 2006: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res., 111, D12314, doi:10.1029/2005JD006490.

    • Search Google Scholar
    • Export Citation
  • Reichardt, J., 1999: Optical and geometrical properties of northern midlatitude cirrus clouds observed with a UV Raman lidar. Phys. Chem. Earth, 24B, 255260.

    • Search Google Scholar
    • Export Citation
  • Reichardt, J., , S. Reichardt, , M. Hess, , and T. J. McGee, 2002: Correlations among the optical properties of cirrus-cloud particles: Microphysical interpretation. J. Geophys. Res., 107, 4562, doi:10.1029/2002JD002589.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1978: Backscattering cross sections for hydrometeors: Measurements at 6328 Ǻ. Appl. Opt., 17, 804806.

  • Sassen, K., , and B. S. Cho, 1992: Subvisual thin cirrus lidar data set for satellite verification and climatological research. J. Appl. Meteor., 31, 12751285.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , and J. R. Campbell, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties. J. Atmos. Sci., 58, 481496.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , and J. M. Comstock, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative properties. J. Atmos. Sci., 58, 21132127.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , R. P. Benson, , and J. D. Spinhirne, 2000: Tropical cirrus cloud properties from TOGA/COARE airborne polarization lidar. Geophys. Res. Lett., 27, 673676.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , Z. Wang, , and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, doi:10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Seifert, P., , A. Ansmann, , D. Müller, , U. Wandinger, , D. Althausen, , A. J. Heymsfield, , S. T. Massie, , and C. Schmitt, 2007: Cirrus optical properties observed with lidar, radiosonde, and satellite over the tropical Indian Ocean during the aerosol-polluted northeast and clean maritime southwest monsoon. J. Geophys. Res., 112, D17205, doi:10.1029/2006JD008352.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., , and A. J. Thorpe, 2004: THORPEX: A global atmospheric research program for the beginning of the 21st century. WMO Bull., 53, 222226.

    • Search Google Scholar
    • Export Citation
  • Sivakumar, V., , Y. Bhavanikumar, , P. B. Rao, , K. Mizutani, , T. Aoki, , M. Yasui, , and T. Itabe, 2003: Lidar observed characteristics of the tropical cirrus clouds. Radio Sci., 38, 1094, doi:10.1029/2002RS002719.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Spichtinger, P., , K. Gierens, , U. Leiterer, , and H. Dier, 2003: Ice supersaturation in the tropopause region over Lindenberg, Germany. Meteor. Z., 12, 143156.

    • Search Google Scholar
    • Export Citation
  • Spichtinger, P., , K. Gierens, , and A. Dornbrack, 2005: Formation of ice supersaturation by mesoscale gravity waves. Atmos. Chem. Phys., 5, 12431255.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , and P. J. Webster, 1981: Clouds and climate: Sensitivity of simple systems. J. Atmos. Sci., 38, 235247.

  • Sunilkumar, S. V., , and K. Parameswaran, 2005: Temperature dependence of tropical cirrus properties and radiative effects. J. Geophys. Res., 110, D13205, doi:10.1029/2004JD005426.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., , and K. N. Liou, 1995: Solar radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals. J. Atmos. Sci., 52, 818837.

    • Search Google Scholar
    • Export Citation
  • Tang, M. C., , J. Liang, , M. J. Shao, , and G. Shi, 1984: Preliminary analysis on the yearly variation of Tibetan Plateau monsoon. Plateau Meteor., 3, 7682.

    • Search Google Scholar
    • Export Citation
  • Thompson, L., , E. Thompson, , M. Davis, , P. Lin, , K. Henderson, , and T. Mashiotta, 2003: Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Climatic Change, 59, 137155.

    • Search Google Scholar
    • Export Citation
  • Tobo, Y., , D. Z. Zhang, , Y. Iwasaka, , and G. Y. Shi, 2007: On the mixture of aerosols and ice clouds over the Tibetan Plateau: Results of a balloon flight in the summer of 1999. Geophys. Res. Lett., 34, L23801, doi:10.1029/2007GL031132.

    • Search Google Scholar
    • Export Citation
  • Vömel, H. H., , L. Selkirk, , J. Miloshevich, , J. Valverde-Canossa, , J. Valdes, , and J. Diaz, 2007: Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Oceanic Technol., 24, 953963.

    • Search Google Scholar
    • Export Citation
  • Währn, J., , V. Oyj, , I. Rekikoski, , H. Jauhiainen, , and J. Hirvensalo, 2004: New Vaisala Radiosonde RS92: Testing and results from the field. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 4.13. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_72134.htm.]

  • Wang, X., , A. Boselli, , L. d’Avino, R. Velotta, N. Spinelli, P. Bruscaglioni, A. Ismaelli, and G. Zaccanti, 2005: An algorithm to determine cirrus properties from analysis of multiple-scattering influence on lidar signals. Appl. Phys., 80, 609615.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , and K. Sassen, 2002: Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part II: Midlatitude cirrus microphysical and radiative properties. J. Atmos. Sci., 59, 22912302.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., , B. Demoz, , and Z. Wang, 2004: Subtropical cirrus cloud extinction to backscatter ratios measured by Raman Lidar during CAMEX-3. Geophys. Res. Lett., 31, L12105, doi:10.1029/2004GL020003.

    • Search Google Scholar
    • Export Citation
  • Wu, G. X., , and S. Chen, 1985: The effect of mechanical forcing on the formation of a mesoscale vortex. Quart. J. Roy. Meteor. Soc., 111, 10491070.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., , W. P. Menzel, , H. M. Woolf, , and K. I. Strabala, 1994: Four years of global cirrus cloud statistics using HIRS. J. Climate, 7, 19721986.

    • Search Google Scholar
    • Export Citation
  • Xun, X. Y., , Z. Y. Hu, , G. F. Cui, , H. G. He, , J. Sun, , L. Hao, , and L. L. Gu, 2011: Change of monsoon in Qinghai-Xizang Plateau and its correlation with summer precipitation of Ordos Plateau. J. Arid Land Resour. Environ., 25 (4), 7983.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , C. Li, , and Z. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Sci. Japan, 70, 319351.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contrib. Atmos. Phys., 71, 223248.

    • Search Google Scholar
    • Export Citation
  • Zerefos, C. S., , K. Eleftheratos, , D. S. Balis, , P. Zanis, , G. Tselioudis, , and C. Meleti, 2003: Evidence of impact of aviation on cirrus cloud formation. Atmos. Chem. Phys., 3, 16331644.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., , and C. Luo, 1994: Ozone valley over Tibetan Plateau. Acta Meteor. Sin., 8, 505506.

  • Zou, H., , and Y. Gao, 1997: Vertical ozone profiles over Tibet using SAGE I and II. Adv. Atmos. Sci., 14, 505512.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 49 49 12
PDF Downloads 33 33 12

The Properties and Formation of Cirrus Clouds over the Tibetan Plateau Based on Summertime Lidar Measurements

View More View Less
  • 1 * Shanghai Meteorological Service, Shanghai, China
  • 2 Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
  • 3 Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
  • 4 College of Environmental Science and Engineering, Donghua University, Shanghai, China
© Get Permissions
Restricted access

Abstract

As part of the Tibet Ozone, Aerosol and Radiation (TOAR) project, a micropulse lidar was operated in Naqu (31.5°N, 92.1°E; 4508 m MSL) on the Tibetan Plateau to observe cirrus clouds continuously from 19 July to 26 August 2011. During the experiment, the time coverage of ice clouds only was 15% in the upper troposphere (above 9.5 km MSL). The cirrus top/bottom altitudes (mean values of 15.6/14.7 km) are comparable to those measured previously at tropical sites but relatively higher than those measured at midlatitude sites. The majority of the cloud layers yielded a lidar ratio between 10 and 40 sr, with a mean value of 28 ± 15 sr, characterized by a bimodal frequency distribution. Subvisible, thin, and opaque cirrus formation was observed in 16%, 34%, and 50% of all cirrus cases, respectively. A mean cirrus optical depth of 0.33 was observed over the Tibetan Plateau, slightly higher than those in the subtropics and tropics. With decreasing temperature, the lidar ratio increased slightly, whereas the mean extinction coefficient decreased significantly. The occurrence of clouds is highly correlated with the outgoing longwave radiation and the strong cold perturbations in the upper troposphere. Deep convective activity and Rossby waves are important dynamical processes that control cirrus variations over the Tibetan Plateau, where both anvil cirrus outflowing from convective cumulonimbus clouds and large-scale strong cold perturbations in the upper troposphere should play an important role in cirrus formation.

Corresponding author address: C. C. Li, P. O. Box 100871, Beijing, China. E-mail: ccli@pku.edu.cn

Abstract

As part of the Tibet Ozone, Aerosol and Radiation (TOAR) project, a micropulse lidar was operated in Naqu (31.5°N, 92.1°E; 4508 m MSL) on the Tibetan Plateau to observe cirrus clouds continuously from 19 July to 26 August 2011. During the experiment, the time coverage of ice clouds only was 15% in the upper troposphere (above 9.5 km MSL). The cirrus top/bottom altitudes (mean values of 15.6/14.7 km) are comparable to those measured previously at tropical sites but relatively higher than those measured at midlatitude sites. The majority of the cloud layers yielded a lidar ratio between 10 and 40 sr, with a mean value of 28 ± 15 sr, characterized by a bimodal frequency distribution. Subvisible, thin, and opaque cirrus formation was observed in 16%, 34%, and 50% of all cirrus cases, respectively. A mean cirrus optical depth of 0.33 was observed over the Tibetan Plateau, slightly higher than those in the subtropics and tropics. With decreasing temperature, the lidar ratio increased slightly, whereas the mean extinction coefficient decreased significantly. The occurrence of clouds is highly correlated with the outgoing longwave radiation and the strong cold perturbations in the upper troposphere. Deep convective activity and Rossby waves are important dynamical processes that control cirrus variations over the Tibetan Plateau, where both anvil cirrus outflowing from convective cumulonimbus clouds and large-scale strong cold perturbations in the upper troposphere should play an important role in cirrus formation.

Corresponding author address: C. C. Li, P. O. Box 100871, Beijing, China. E-mail: ccli@pku.edu.cn
Save