• Abatzoglou, J. T., 2011: Influence of the PNA on declining mountain snowpack in the Western United States. Int. J. Climatol., 31, 11351142, doi:10.1002/joc.2137.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., 2010: California wintertime precipitation bias in regional and global climate models. J. Appl. Meteor. Climatol., 49, 21472158.

    • Search Google Scholar
    • Export Citation
  • Carter, D. A., , K. S. Gage, , W. L. Ecklund, , W. M. Angevine, , P. E. Johnston, , A. C. Riddle, , J. Wilson, , and C. R. Williams, 1995: Developments in UHF lower tropospheric wind profiling at NOAA’s Aeronomy Laboratory. Radio Sci.,30, 977–1001, doi:10.1029/95RS00649.

  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Das, T., , M. D. Dettinger, , D. R. Cayan, , and H. G. Hidalgo, 2011: Potential increase in floods in California’s Sierra Nevada under future climate projections. Climatic Change,109 (Suppl.), 71–94, doi:10.1007/s10584-011-0298-z.

  • Duan, J., and Coauthors, 1996: GPS meteorology: Direct estimation of the absolute value of precipitable water. J. Appl. Meteor., 35, 830838.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., , and T. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., , and W. Szyrmer, 1999: Modeling of the melting layer. Part II: Electromagnetic. J. Atmos. Sci., 56, 35933600.

  • Findeisen, W., 1940: The formation of the 0°C isothermal layer in fractocumulus and nimbostratus. Meteor. Z., 57, 4954.

  • Fovell, R. G., , and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 38463879.

    • Search Google Scholar
    • Export Citation
  • Guan, B., , N. P. Molotch, , D. E. Waliser, , E. J. Fetzer, , and P. J. Neiman, 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, doi:10.1029/2010GL044696.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , and J.-O. J. Lim, 2006: The WRF Single-Moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., , J. Dudhia, , and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Houze, R., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Janjic, Z., 1996: The surface layer in the NCEP Eta Model. Proc. 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., P2.1.

  • Janjic, Z., 2002: Nonsingular implementation of the Mellor-Yamada Level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

  • Jankov, I., , J.-W. Bao, , P. J. Neiman, , P. J. Schultz, , H. Yuan, , and A. B. White, 2009: Evaluation and comparison of microphysical algorithms in ARW-WRF model simulations of atmospheric river events affecting the California coast. J. Hydrometeor., 10, 847870.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Klemp, J., , J. Dudhia, , and A. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004.

    • Search Google Scholar
    • Export Citation
  • Knowles, N., , M. D. Dettinger, , and D. R. Cayan, 2006: Trends in snowfall versus rainfall in the western United States. J. Climate, 19, 45454559.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., , and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., , and B. A. Colle, 2009: The 4–5 December 2001 IMPROVE-2 event: Observed microphysics and comparisons with the Weather Research and Forecasting model. Mon. Wea. Rev., 137, 13721392.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J., , P. Neiman, , B. Martner, , A. White, , D. Gottas, , and F. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J., , J. Minder, , P. Neiman, , and E. Sukovich, 2010: Relationships between barrier jet heights, precipitation distributions, and streamflow in the northern Sierra Nevada. Water Resour. Res., 11, 11411156.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1983: The kinematics of orographic air flow during Sierra storms. J. Atmos. Sci., 40, 12181227.

  • Marwitz, J. D., 1987: Deep orographic storms over the Sierra Nevada. Part I: Thermodynamic and kinematic structure. J. Atmos. Sci., 44, 159173.

    • Search Google Scholar
    • Export Citation
  • Mattioli, V., , E. R. Westwater, , D. Cimini, , J. C. Liljegren, , B. M. Lesht, , S. I. Gutman, , and F. J. Schmidlin, 2007: Analysis of radiosonde and ground-based remotely sensed PWV data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment. J. Atmos. Oceanic Technol., 24, 415431.

    • Search Google Scholar
    • Export Citation
  • Maurer, E., , and C. Mass, 2006: Using radar data to partition precipitation into rain and snow in a hydrologic model. J. Hydrol. Eng., 11, 214221, doi:10.1061/(ASCE)1084-0699(2006)11:3(214).

    • Search Google Scholar
    • Export Citation
  • Medina, S., , B. F. Smull, , R. A. Houze, , and M. Steiner, 2005: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62, 35803598.

    • Search Google Scholar
    • Export Citation
  • Medina, S., , E. Sukovich, , and R. A. Houze, 2007: Vertical structures of precipitation in cyclones crossing the Oregon Cascades. Mon. Wea. Rev., 135, 35653586.

    • Search Google Scholar
    • Export Citation
  • Mellor, G., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., , and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., , and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci.,62, 3065–3081.

  • Minder, J. R., 2010: The sensitivity of mountain snowpack accumulation to climate warming. J. Climate, 23, 26342650.

  • Minder, J. R., , D. R. Durran, , and G. H. Roe, 2011: Mesoscale controls on the mountainside snow line. J. Atmos. Sci., 68, 21072127.

  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , G. Thompson, , and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , G. A. Wick, , F. M. Ralph, , B. E. Martner, , A. B. White, , and D. E. Kingsmill, 2005: Wintertime nonbrightband rain in California and Oregon during CALJET and PACJET: Geographic, interannual, and synoptic variability. Mon. Wea. Rev., 133, 11991223.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , F. M. Ralph, , G. A. Wick, , J. D. Lundquist, , and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , E. M. Sukovich, , F. M. Ralph, , and M. Hughes, 2010: A seven-year wind profiler–based climatology of the windward barrier jet along California’s northern Sierra Nevada. Mon. Wea. Rev., 138, 12061233.

    • Search Google Scholar
    • Export Citation
  • Parish, T., 1982: Barrier winds along the Sierra Nevada mountains. J. Appl. Meteor., 21, 925930.

  • Pierce, D. W., and Coauthors, 2008: Attribution of declining western U.S. snowpack to human effects. J. Climate, 21, 64256444.

  • Ralph, F. M., and Coauthors, 2005: Improving short-term (0–48 h) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop. Bull. Amer. Meteor. Soc.,86, 1619–1632.

  • Reynolds, D., , and A. Dennis, 1986: A review of the Sierra Cooperative Pilot Project. Bull. Amer. Meteor. Soc., 67, 513523.

  • Rutledge, S. A., , and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , and M. L. Weisman, 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137, 488494.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. National Center for Atmospheric Research Tech. Note NCAR/TN-475+STR, 113 pp.

  • Smith, B. L., , S. E. Yuter, , P. J. Neiman, , and D. E. Kingsmill, 2010: Water vapor fluxes and orographic precipitation over northern California associated with a landfalling atmospheric river. Mon. Wea. Rev., 138, 74100.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., , J. D. Marwitz, , J. C. Pace, , and R. E. Carbone, 1984: Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci., 41, 32273237.

    • Search Google Scholar
    • Export Citation
  • Svoma, B. M., 2009: Trends in snow level elevation in the mountains of central Arizona. Int. J. Climatol., 31, 8794, doi:10.1002/joc.2062.

    • Search Google Scholar
    • Export Citation
  • Svoma, B. M., 2011: El Niño–Southern Oscillation and snow level in the western United States. J. Geophys. Res., 116, D24117, doi:10.1029/2011JD016287.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., , and I. Zawadzki, 1999: Modeling of the melting layer. Part I: Dynamics and microphysics. J. Atmos. Sci., 56, 35733592.

  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82 (1–4), 97137, doi:10.1007/s00703-001-0594-7.

    • Search Google Scholar
    • Export Citation
  • Thériault, J., and Coauthors, 2012: A case study of processes impacting precipitation phase and intensity during the Vancouver 2010 Winter Olympics. J. Hydrometeor., 27, 13011325.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , R. M. Rasmussen, , and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , P. Field, , R. Rasmussen, , and W. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115.

    • Search Google Scholar
    • Export Citation
  • Tobin, C., , A. Rinaldo, , and B. Schaefli, 2012: Snowfall limit forecasts and hydrological modeling. J. Hydrometeor., 13, 15071519.

  • Unterstrasser, S., , and G. Zängl, 2006: Cooling by melting precipitation in Alpine valleys: An idealized numerical modelling study. Quart. J. Roy. Meteor. Soc., 132, 14891508, doi:10.1256/qj.05.158.

    • Search Google Scholar
    • Export Citation
  • Vicuña, S., , E. P. Maurer, , B. Joyce, , J. A. Dracup, , and D. Purkey, 2007: The sensitivity of California water resources to climate change scenarios. J. Amer. Water Resour. Assoc., 43, 482498, doi:10.1111/j.1752-1688.2007.00038.x.

    • Search Google Scholar
    • Export Citation
  • Vicuña, S., , J. A. Dracup, , and L. Dale, 2011: Climate change impacts on two high-elevation hydropower systems in California. Climatic Change,109 (Suppl.), 151–169, doi:10.1007/s10584-011-0301-8.

  • Weber, B., , D. Wuertz, , and D. Welsh, 1993: Quality controls for profiler measurements of winds and RASS temperatures. J. Atmos. Oceanic Technol., 10, 452464.

    • Search Google Scholar
    • Export Citation
  • Wentz, F., 1995: The intercomparison of 53 SSM/I water vapor algorithms. Remote Sensing Systems Tech. Rep. on WetNet Water Vapor Intercomparison Project, 19 pp.

  • White, A. B., , J. R. Jordan, , B. E. Martner, , F. M. Ralph, , and B. W. Bartram, 2000: Extending the dynamic range of an S-band radar for cloud and precipitation studies. J. Atmos. Oceanic Technol., 17, 12261234.

    • Search Google Scholar
    • Export Citation
  • White, A. B., , D. J. Gottas, , E. T. Strem, , F. M. Ralph, , and P. J. Neiman, 2002: An automated brightband height detection algorithm for use with Doppler radar spectral moments. J. Atmos. Oceanic Technol., 19, 687697.

    • Search Google Scholar
    • Export Citation
  • White, A. B., , P. J. Neiman, , F. M. Ralph, , D. E. Kingsmill, , and P. O. G. Persson, 2003: Coastal orographic rainfall processes observed by radar during the California land-falling jets experiment. J. Hydrometeor.,4, 264–282.

  • White, A. B., , D. J. Gottas, , A. F. Henkel, , P. J. Neiman, , F. M. Ralph, , and S. I. Gutman, 2010: Developing a performance measure for snow-level forecasts. J. Hydrometeor., 11, 739753.

    • Search Google Scholar
    • Export Citation
  • Wisner, C., , H. D. Orville, , and C. Myers, 1972: Numerical model of a hail-bearing cloud. J. Atmos. Sci.,29, 1160–1181.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 41 41 10
PDF Downloads 23 23 1

Mesoscale Variations of the Atmospheric Snow Line over the Northern Sierra Nevada: Multiyear Statistics, Case Study, and Mechanisms

View More View Less
  • 1 Department of Geology and Geophysics, Yale University, New Haven, Connecticut
  • 2 CIRES, University of Colorado, and Physical Sciences Division, NOAA/ESRL, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Observations from several mountain ranges reveal that the height of the transition from snowfall to rainfall, the snow line, can intersect the terrain at an elevation hundreds of meters below its elevation in the free air upwind. This mesoscale lowering of the snow line affects both the accumulation of mountain snowpack and the generation of storm runoff. A unique multiyear view of this behavior based on data from profiling radars in the northern Sierra Nevada deployed as part of NOAA’s Hydrometeorology Testbed is presented. Data from 3 yr of storms show that the mesoscale lowering of the snow line is a feature common to nearly all major storms, with an average snow line drop of 170 m.

The mesoscale behavior of the snow line is investigated in detail for a major storm over the northern Sierra Nevada. Comparisons of observations from sondes and profiling radars with high-resolution simulations using the Weather Research and Forecasting model (WRF) show that WRF is capable of reproducing the observed lowering of the snow line in a realistic manner. Modeling results suggest that radar profiler networks may substantially underestimate the lowering by failing to resolve horizontal snow line variations in close proximity to the mountainside. Diagnosis of model output indicates that pseudoadiabatic processes related to orographic blocking, localized cooling due to melting of orographically enhanced snowfall, and spatial variations in hydrometeor melting distance all play important roles. Simulations are surprisingly insensitive to model horizontal resolution but have important sensitivities to microphysical parameterization.

Corresponding author address: Justin R. Minder, Dept. of Atmospheric and Environmental Science, University at Albany (SUNY), 1400 Washington Avenue, Albany, NY 12222. E-mail: jminder@albany.edu

Abstract

Observations from several mountain ranges reveal that the height of the transition from snowfall to rainfall, the snow line, can intersect the terrain at an elevation hundreds of meters below its elevation in the free air upwind. This mesoscale lowering of the snow line affects both the accumulation of mountain snowpack and the generation of storm runoff. A unique multiyear view of this behavior based on data from profiling radars in the northern Sierra Nevada deployed as part of NOAA’s Hydrometeorology Testbed is presented. Data from 3 yr of storms show that the mesoscale lowering of the snow line is a feature common to nearly all major storms, with an average snow line drop of 170 m.

The mesoscale behavior of the snow line is investigated in detail for a major storm over the northern Sierra Nevada. Comparisons of observations from sondes and profiling radars with high-resolution simulations using the Weather Research and Forecasting model (WRF) show that WRF is capable of reproducing the observed lowering of the snow line in a realistic manner. Modeling results suggest that radar profiler networks may substantially underestimate the lowering by failing to resolve horizontal snow line variations in close proximity to the mountainside. Diagnosis of model output indicates that pseudoadiabatic processes related to orographic blocking, localized cooling due to melting of orographically enhanced snowfall, and spatial variations in hydrometeor melting distance all play important roles. Simulations are surprisingly insensitive to model horizontal resolution but have important sensitivities to microphysical parameterization.

Corresponding author address: Justin R. Minder, Dept. of Atmospheric and Environmental Science, University at Albany (SUNY), 1400 Washington Avenue, Albany, NY 12222. E-mail: jminder@albany.edu
Save