• Abarca, S. F., 2011: Secondary eyewall formation in high resolution, realistic hurricane simulations. Ph.D. dissertation, University of California, Los Angeles, 191 pp.

  • Abarca, S. F., , and K. L. Corbosiero, 2011: Secondary eyewall formation in WRF simulations of Hurricanes Rita and Katrina (2005). Geophys. Res. Lett., 38, L07802, doi:10.1029/2011GL047015.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., , M. T. Montgomery, , and W.-C. Lee, 2012: An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 69, 24142432.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58, 21282145.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., , and R. A. Houze Jr., 2011: Kinematics of the secondary eyewall observed in Hurricane Rita (2005). J. Atmos. Sci., 68, 16201636.

    • Search Google Scholar
    • Export Citation
  • Hawkins, J. D., , and M. Helveston, 2008: Tropical cyclone multiple eyewall characteristics. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 14B.1. [Available online at https://ams.confex.com/ams/28Hurricanes/techprogram/paper_138300.htm.]

  • Judt, F., , and S. S. Chen, 2010: Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Rita of 2005. J. Atmos. Sci., 67, 35813599.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., , L.-Y. Lin, , C.-P. Chang, , and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 27222734.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., , W. H. Schubert, , C.-L. Tsai, , and Y.-F. Kuo, 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 51835198.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., , C.-P. Chang, , Y.-T. Yang, , and H.-J. Jiang, 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137, 37583770.

    • Search Google Scholar
    • Export Citation
  • Maclay, K. S., , M. DeMaria, , and T. H. Vonder Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136, 48824898.

    • Search Google Scholar
    • Export Citation
  • Martinez, Y., , G. Brunet, , and M. K. Yau, 2010: On the dynamics of two-dimensional hurricane-like concentric rings vortex formation. J. Atmos. Sci., 67, 32533268.

    • Search Google Scholar
    • Export Citation
  • Martinez, Y., , G. Brunet, , M. K. Yau, , and X. Wang, 2011: On the dynamics of concentric eyewall genesis: Space–time empirical normal modes diagnosis. J. Atmos. Sci., 68, 457476.

    • Search Google Scholar
    • Export Citation
  • Menelaou, K., , M. K. Yau, , and Y. Martinez, 2012: On the dynamics of the secondary eyewall genesis in Hurricane Wilma (2005). Geophys. Res. Lett., 39, L04801, doi:10.1029/2011GL050699.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465.

    • Search Google Scholar
    • Export Citation
  • Moon, Y., , D. S. Nolan, , and M. Iskandarani, 2010: On the use of two-dimensional incompressible flow to study secondary eyewall formation in tropical cyclones. J. Atmos. Sci., 67, 37653773.

    • Search Google Scholar
    • Export Citation
  • Nong, S., , and K. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricanes. Quart. J. Roy. Meteor. Soc., 129, 33233338.

    • Search Google Scholar
    • Export Citation
  • Qiu, X., , Z.-M. Tan, , and Q. Xiao, 2010: The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 20922109.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. T. Montgomery, , F. D. Marks Jr., , and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. T. Montgomery, , and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., , and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., , and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 33223335.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , M. T. Montgomery, , and N. Van Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, doi:10.1002/qj.428.

    • Search Google Scholar
    • Export Citation
  • Terwey, W. D., , and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112, doi:10.1029/2007JD008897.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 12131238.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 12391262.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., , J. A. Clos, , and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., , H. Jin, , S. Lord, , and J. Piotrowicz, 1984: Hurricane structure and evolution as simulated by an axisymmetric nonhydrostatic numerical model. J. Atmos. Sci., 41, 11691186.

    • Search Google Scholar
    • Export Citation
  • Yi-Hsuan, H., , M. T. Montgomery, , and C. C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., , and B. Wang, 2011: Mechanism of concentric eyewall replacement cycles and associated intensity change. J. Atmos. Sci., 68, 972988.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 5
PDF Downloads 4 4 2

Comments on “Convectively Generated Potential Vorticity in Rainbands and Formation of the Secondary Eyewall in Hurricane Rita of 2005”

View More View Less
  • 1 University of South Alabama, Mobile, Alabama
  • 2 Naval Postgraduate School, Monterey, California
  • 3 Naval Postgraduate School, Monterey, California, and NOAA/AOML Hurricane Research Division, Miami, Florida
© Get Permissions
Restricted access

Abstract

In a previous paper Judt and Chen propose that secondary eyewall formation can be the result of the accumulation of convectively generated potential vorticity in the rainbands. They argue that secondary potential vorticity maxima precede the development of the secondary wind maximum and conclude that vortex Rossby waves do not contribute to the formation of the secondary eyewall. Amidst examination of their thought-provoking study, some questions arose regarding their methodology, interpretation, and portrayal of previous literature.

Here the authors inquire about aspects of the methodology for diagnosing vortex Rossby waves and assessing their impact on their simulation. Inaccuracies in the literature review are noted and further analysis of existing, three-dimensional, full-physics, numerical hurricane integrations that exhibit canonical secondary eyewalls are encouraged.

Corresponding author address: Dr. Wesley Terwey, 307 University Blvd. N., LSCB 136, Mobile, AL 36688-0002. E-mail: terwey@usouthal.edu

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/2010JAS3471.1.

Abstract

In a previous paper Judt and Chen propose that secondary eyewall formation can be the result of the accumulation of convectively generated potential vorticity in the rainbands. They argue that secondary potential vorticity maxima precede the development of the secondary wind maximum and conclude that vortex Rossby waves do not contribute to the formation of the secondary eyewall. Amidst examination of their thought-provoking study, some questions arose regarding their methodology, interpretation, and portrayal of previous literature.

Here the authors inquire about aspects of the methodology for diagnosing vortex Rossby waves and assessing their impact on their simulation. Inaccuracies in the literature review are noted and further analysis of existing, three-dimensional, full-physics, numerical hurricane integrations that exhibit canonical secondary eyewalls are encouraged.

Corresponding author address: Dr. Wesley Terwey, 307 University Blvd. N., LSCB 136, Mobile, AL 36688-0002. E-mail: terwey@usouthal.edu

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/2010JAS3471.1.

Save