• Abarca, S. F., , and K. L. Corbosiero, 2011: Secondary eyewall formation in WRF simulations of Hurricanes Rita and Katrina (2005). Geophys. Res. Lett., 38, L07802, doi:10.1029/2011GL047015.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., , E. J. Zipser, , D. Jorgensen, , and F. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 21252137.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., , M. T. Montgomery, , and W.-C. Lee, 2012: An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 69, 10211036.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX, and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., , and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947957.

  • Blackadar, A. K., 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, Vol. 1, J. R. Pfafflin and E. N. Ziegler, Eds., Gordon and Breach Science Publisher, 50–85.

  • Chen, S. S., , J. A. Knaff, , and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58, 21282145.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366460.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , J. Molinari, , A. R. Aiyyer, , and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 30733091.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., , and R. A. Houze Jr., 2011: Kinematics of the secondary eyewall observed in Hurricane Rita (2005). J. Atmos. Sci., 68, 16201636.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., , T. D. B. Lambert, , and M. A. Boothe, 2007: Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Wea. Forecasting, 22, 747762.

    • Search Google Scholar
    • Export Citation
  • Fang, J., , and F. Zhang, 2012: Effect of beta-shear on simulated tropical cyclones. Mon. Wea. Rev., 140, 33273346.

  • Fudeyasu, H., , and Y. Wang, 2011: Balanced contribution to the intensification of a tropical cyclone simulated in TCM4: Outer core spinup process. J. Atmos. Sci., 68, 430449.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., , J. Dudhia, , and D. R. Stauffer, 1995: A description of the fifth-generation Penn State–NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 122 pp.

  • Hack, J. J., , and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573.

    • Search Google Scholar
    • Export Citation
  • Hawkins, J. D., , and M. Helveston, 2004: Tropical cyclone multiple eyewall characteristics. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., P1.7. [Available online at https://ams.confex.com/ams/26HURR/techprogram/paper_76084.htm.]

  • Hawkins, J. D., , M. Helveston, , T. F. Lee, , F. J. Turk, , K. Richardson, , C. Sampson, , J. Kent, , and R. Wade, 2006: Tropical cyclone multiple eyewall configurations. Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 6B.1. [Available online at https://ams.confex.com/ams/27Hurricanes/techprogram/paper_108864.htm.]

  • Hence, D. A., , and R. A. Houze Jr., 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108, doi:10.1029/2007JD009429.

    • Search Google Scholar
    • Export Citation
  • Hence, D. A., , and R. A. Houze Jr., 2012a: Vertical structure of tropical cyclones with concentric eyewalls as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 69, 10211036.

    • Search Google Scholar
    • Export Citation
  • Hence, D. A., , and R. A. Houze Jr., 2012b: Vertical structure of tropical cyclone rainbands as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 69, 26442661.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., , and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315.

  • Hogsett, W., , and D.-L. Zhang, 2009: Numerical simulation of Hurricane Bonnie (1998). Part III: Energetics. J. Atmos. Sci., 66, 26782696.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and Coauthors, 2006: The Hurricane Rainband and Intensity Change Experiment (RAINEX): Observations and modeling of Hurricanes Katrina, Ophelia, and Rita (2005). Bull. Amer. Meteor. Soc., 87, 15031521.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , S. S. Chen, , B. F. Smull, , W. C. Lee, , and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 12351239.

    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., , M. T. Montgomery, , and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197.

  • Judt, F., , and S. S. Chen, 2010: Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Rita of 2005. J. Atmos. Sci., 67, 35813599.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., , W. H. Schubert, , C.-L. Tsai, , and Y.-F. Kuo, 2008: Vortex interactions and the barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 51835198.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., , C.-P. Chang, , Y.-T. Yang, , and H.-J. Jiang, 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137, 37583770.

    • Search Google Scholar
    • Export Citation
  • Maclay, K. S., , M. DeMaria, , and T. H. Vonder Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136, 48824898.

    • Search Google Scholar
    • Export Citation
  • Mallen, K. J., , M. T. Montgomery, , and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclone circulation: Implications for vortex resiliency. J. Atmos. Sci., 62, 408425.

    • Search Google Scholar
    • Export Citation
  • Martinez, Y., , G. Brunet, , M. K. Yau, , and X. Wang, 2011: On the dynamics of concentric eyewall genesis: Space–time empirical normal modes diagnosis. J. Atmos. Sci., 68, 457476.

    • Search Google Scholar
    • Export Citation
  • Menelaou, K., , M. K. Yau, , and Y. H. Martinez, 2012: On the dynamics of the secondary eyewall genesis in Hurricane Wilma (2005). Geophys. Res. Lett., 39, L04801, doi:10.1029/2011GL050699.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , and D. Vollaro, 1990: External influences on hurricane intensity. Part II: Vertical structure and response of the hurricane vortex. J. Atmos. Sci., 47, 19021918.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465.

    • Search Google Scholar
    • Export Citation
  • Moon, Y., , and D. S. Nolan, 2010: The dynamic response of the hurricane wind field to spiral rainband heating. J. Atmos. Sci., 67, 17791805.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , M. T. Montgomery, , and L. D. Grasso, 2001: The wavenumber-one instability and trochoidal motion of hurricane-like vortices. J. Atmos. Sci., 58, 32433270.

    • Search Google Scholar
    • Export Citation
  • Nong, S., , and K. A. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricanes. Quart. J. Roy. Meteor. Soc., 129, 33233338.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891917.

    • Search Google Scholar
    • Export Citation
  • Qiu, X., , Z.-M. Tan, , and Q. Xiao, 2010: The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 20922109.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., , R. J. Rasmussen, , and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., , S. Lorsolo, , P. Reasor, , J. Gamache, , and F. Marks, 2012: Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites. Mon. Wea. Rev., 140, 7799.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., , W. H. Schubert, , and J. P. Kossin, 2008: Some dynamical aspects of tropical cyclone concentric eyewalls. Quart. J. Roy. Meteor. Soc., 134, 583593.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., , D. S. Nolan, , J. P. Kossin, , F. Zhang, , and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 26212643.

    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., , and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Mon. Wea. Rev., 123, 35023517.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697.

  • Shapiro, L. J., 1983: Asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 19841998.

  • Shapiro, L. J., , and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., , J. P. Kossin, , and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , M. T. Montgomery, , and V. S. Nguyen, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335.

    • Search Google Scholar
    • Export Citation
  • Terwey, W. D., , and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112, doi:10.1029/2007JD008897.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity and kinetic energy budgets. J. Atmos. Sci., 59, 12131238.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 12391262.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273.

  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242264.

  • Willoughby, H. E., , J. A. Clos, , and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., , Y.-H. Huang, , and G.-Y. Lien, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Mon. Wea. Rev., 140, 506527.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , and S. A. Braun, 2004: Effects of environmentally induced asymmetries on hurricane intensity: A numerical study. J. Atmos. Sci., 61, 30653081.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., , and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 7
PDF Downloads 40 40 7

The Roles of Asymmetric Inflow Forcing Induced by Outer Rainbands in Tropical Cyclone Secondary Eyewall Formation

View More View Less
  • 1 Key Laboratory of Mesoscale Severe Weather/MOE, and School of Atmospheric Sciences, Nanjing University, Nanjing, China
© Get Permissions
Restricted access

Abstract

This study analyzes the secondary eyewall formation (SEF) process in an idealized cloud-resolving simulation of a tropical cyclone. In particular, the unbalanced boundary layer response to asymmetric inflow forcing induced by outer rainbands (ORBs) is examined in order to understand the mechanisms driving the sustained convection outside the primary eyewall during the early phase of SEF.

The enhancement of convection in the SEF region follows the formation and inward contraction of an ORB. The azimuthal distribution of the enhanced convection is highly asymmetric but regular, generally along a half circle starting from the downwind portion of the ORB. It turns out that the descending radial inflow in the middle and downwind portions of the ORB initiates/maintains a strong inflow in the boundary layer. The latter is able to penetrate into the inner-core region, sharpens the gradient of radial velocity, and reinforces convergence. Consequently, warm and moist air is continuously lifted up at the leading edge of the strong inflow to support deep convection. Moreover, the inflow from the ORB creates strong supergradient winds that are ejected outward downwind, thereby enhancing convergence and convection on the other side of the storm. The results provide new insight into the key processes responsible for convection enhancement during the early phase of SEF in three dimensions and suggest the limitations of axisymmetric studies. There are also implications regarding the impact of the asymmetric boundary layer flow under a translating storm on SEF.

Corresponding author address: Dr. Zhe-Min Tan, School of Atmospheric Sciences, Nanjing University, Nanjing 210093, China. E-mail: zmtan@nju.edu.cn

Abstract

This study analyzes the secondary eyewall formation (SEF) process in an idealized cloud-resolving simulation of a tropical cyclone. In particular, the unbalanced boundary layer response to asymmetric inflow forcing induced by outer rainbands (ORBs) is examined in order to understand the mechanisms driving the sustained convection outside the primary eyewall during the early phase of SEF.

The enhancement of convection in the SEF region follows the formation and inward contraction of an ORB. The azimuthal distribution of the enhanced convection is highly asymmetric but regular, generally along a half circle starting from the downwind portion of the ORB. It turns out that the descending radial inflow in the middle and downwind portions of the ORB initiates/maintains a strong inflow in the boundary layer. The latter is able to penetrate into the inner-core region, sharpens the gradient of radial velocity, and reinforces convergence. Consequently, warm and moist air is continuously lifted up at the leading edge of the strong inflow to support deep convection. Moreover, the inflow from the ORB creates strong supergradient winds that are ejected outward downwind, thereby enhancing convergence and convection on the other side of the storm. The results provide new insight into the key processes responsible for convection enhancement during the early phase of SEF in three dimensions and suggest the limitations of axisymmetric studies. There are also implications regarding the impact of the asymmetric boundary layer flow under a translating storm on SEF.

Corresponding author address: Dr. Zhe-Min Tan, School of Atmospheric Sciences, Nanjing University, Nanjing 210093, China. E-mail: zmtan@nju.edu.cn
Save