A Study of Aerosol Impacts on Clouds and Precipitation Development in a Large Winter Cyclone

Gregory Thompson Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gregory Thompson in
Current site
Google Scholar
PubMed
Close
and
Trude Eidhammer Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Trude Eidhammer in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Aerosols influence cloud and precipitation development in complex ways due to myriad feedbacks at a variety of scales from individual clouds through entire storm systems. This paper describes the implementation, testing, and results of a newly modified bulk microphysical parameterization with explicit cloud droplet nucleation and ice activation by aerosols. Idealized tests and a high-resolution, convection-permitting, continental-scale, 72-h simulation with five sensitivity experiments showed that increased aerosol number concentration results in more numerous cloud droplets of overall smaller size and delays precipitation development. Furthermore, the smaller droplet sizes cause the expected increased cloud albedo effect and more subtle longwave radiation effects. Although increased aerosols generally hindered the warm-rain processes, regions of mixed-phase clouds were impacted in slightly unexpected ways with more precipitation falling north of a synoptic-scale warm front. Aerosol impacts to regions of light precipitation, less than approximately 2.5 mm h−1, were far greater than impacts to regions with higher precipitation rates. Comparisons of model forecasts with five different aerosol states versus surface precipitation measurements revealed that even a large-scale storm system with nearly a thousand observing locations did not indicate which experiment produced a more correct final forecast, indicating a need for far longer-duration simulations due to the magnitude of both model forecast error and observational uncertainty. Last, since aerosols affect cloud and precipitation phase and amount, there are resulting implications to a variety of end-user applications such as surface sensible weather and aircraft icing.

Denotes Open Access content.

Corresponding author address: Gregory Thompson, Research Applications Laboratory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: gthompsn@ucar.edu

Abstract

Aerosols influence cloud and precipitation development in complex ways due to myriad feedbacks at a variety of scales from individual clouds through entire storm systems. This paper describes the implementation, testing, and results of a newly modified bulk microphysical parameterization with explicit cloud droplet nucleation and ice activation by aerosols. Idealized tests and a high-resolution, convection-permitting, continental-scale, 72-h simulation with five sensitivity experiments showed that increased aerosol number concentration results in more numerous cloud droplets of overall smaller size and delays precipitation development. Furthermore, the smaller droplet sizes cause the expected increased cloud albedo effect and more subtle longwave radiation effects. Although increased aerosols generally hindered the warm-rain processes, regions of mixed-phase clouds were impacted in slightly unexpected ways with more precipitation falling north of a synoptic-scale warm front. Aerosol impacts to regions of light precipitation, less than approximately 2.5 mm h−1, were far greater than impacts to regions with higher precipitation rates. Comparisons of model forecasts with five different aerosol states versus surface precipitation measurements revealed that even a large-scale storm system with nearly a thousand observing locations did not indicate which experiment produced a more correct final forecast, indicating a need for far longer-duration simulations due to the magnitude of both model forecast error and observational uncertainty. Last, since aerosols affect cloud and precipitation phase and amount, there are resulting implications to a variety of end-user applications such as surface sensible weather and aircraft icing.

Denotes Open Access content.

Corresponding author address: Gregory Thompson, Research Applications Laboratory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: gthompsn@ucar.edu
Save
  • Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Arenberg, D. L., 1943: Determination of icing conditions for airplanes. Trans. Amer. Geophys. Union, 24, 99122.

  • Barlage, M., and Coauthors, 2010: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res., 115, D22101, doi:10.1029/2009JD013470.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The supercooling of water. Proc. Phys. Soc. London, 66B, 688694, doi:10.1088/0370-1301/66/8/309.

  • Chin, M., and Coauthors, 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci., 59, 461483, doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., and G. A. Isaac, 2012: Characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification. J. Climate Appl. Meteor., 51, 265284, doi:10.1175/JAMC-D-11-022.1.

    • Search Google Scholar
    • Export Citation
  • Colarco, P., A. da Silva, M. Chin, and T. Diehl, 2010: Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res., 115, D14207, doi:10.1029/2009JD012820.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32, doi:10.1175/0065-9401-21.43.29.

    • Search Google Scholar
    • Export Citation
  • Cui, Z., S. Davies, K. S. Carslaw, and A. M. Blyth, 2011: The response of precipitation to aerosol through riming and melting in deep convective clouds. Atmos. Chem. Phys., 11, 34953510, doi:10.5194/acp-11-3495-2011.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., D. M. Murphy, P. K. Hudson, and D. S. Thomson, 2004: Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE. J. Geophys. Res., 109, D04201, doi:10.1029/2003JD004032.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:10.1029/2003GL017410.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, doi:10.1073/pnas.0910818107.

    • Search Google Scholar
    • Export Citation
  • Dusek, U., and Coauthors, 2006: Size matters more than chemistry for cloud nucleating ability of aerosol particles. Science, 312, 13751378, doi:10.1126/science.1125261.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., P. J. DeMott, and S. M. Kreidenweis, 2009: A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework. J. Geophys. Res., 114, D06202, doi:10.1029/2008JD011095.

    • Search Google Scholar
    • Export Citation
  • Fan, J. W., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, doi:10.1029/2009JD012352.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and A. J. Heymsfield, 1992: Parameterizations of condensational growth of droplets for use in general circulation models. J. Atmos. Sci., 49, 23252342, doi:10.1175/1520-0469(1992)049<2325:POCGOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Finstad, K. J., E. P. Lozowski, and E. M. Gates, 1988: A computational investigation of water droplet trajectories. J. Atmos. Oceanic Technol., 5, 160170, doi:10.1175/1520-0426(1988)005<0160:ACIOWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., L. R. Leung, R. C. Easter, and H. Abdul-Razzak, 1997: Prediction of cloud droplet number in a general circulation model. J. Geophys. Res., 102, 21 77721 794, doi:10.1029/97JD01810.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and Coauthors, 2011: Droplet nucleation: Physically-based parameterizations and comparative evaluation. J. Adv. Model. Earth Syst., 3, M10001, doi:10.1029/2011MS000074.

    • Search Google Scholar
    • Export Citation
  • Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106, 20 25520 273, doi:10.1029/2000JD000053.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2011: Indirect impact of atmospheric aerosol in idealized simulations of convective-radiative quasi equilibrium. Part II: Double-moment microphysics. J. Climate, 24, 18971912, doi:10.1175/2010JCLI3647.1.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled online chemistry within the WRF model. Atmos. Environ., 39, 69576975, doi:10.1016/j.atmosenv.2005.04.027.

    • Search Google Scholar
    • Export Citation
  • Hindman, E. E., E. Carter, R. Borys, and D. Mitchell, 1992: Collecting supercooled cloud droplets as a function of droplet size. J. Atmos. Oceanic Technol., 9, 337353, doi:10.1175/1520-0426(1992)009<0337:CSCDAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., J. E. Kristjánsson, and S. M. Burrows, 2010: How important is biological ice nucleation in clouds on a global scale? Environ. Res. Lett., 5, 024009, doi:10.1088/1748-9326/5/2/024009.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., E. J. Mlawer, S. A. Clough, and J.-J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate mode, CCM3. J. Geophys. Res., 105, 14 87314 890, doi:10.1029/2000JD900091.

    • Search Google Scholar
    • Export Citation
  • Igel, A. L., S. C. van den Heever, C. M. Naud, S. M. Saleeby, and D. J. Posselt, 2013: Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations. J. Atmos. Sci., 70, 17681783, doi:10.1175/JAS-D-12-0170.1.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., and Coauthors, 2010: Simulation of seasonal snowfall over Colorado. Atmos. Res., 97, 462477, doi:10.1016/j.atmosres.2010.04.010.

    • Search Google Scholar
    • Export Citation
  • Jeck, R. K., 2001: A history and interpretation of aircraft icing intensity definitions and FAA rules for operating in icing conditions. FAA Tech. Rep. DOT/FAA/AR-01/91, 43 pp.

  • Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748, doi:10.1175/2007JAS2515.1.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., L. R. Leung, B. Lynn, and S. Ghan, 2009: Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral bin and bulk parameterization schemes. J. Geophys. Res., 114, D22203, doi:10.1029/2009JD011902.

    • Search Google Scholar
    • Export Citation
  • Koop, T., B. P. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611614, doi:10.1038/35020537.

    • Search Google Scholar
    • Export Citation
  • Kringlebotn Nygaard, B. E., J. E. Kristjánsson, and L. Makkonen, 2011: Prediction of in-cloud icing conditions at ground level using the WRF model. J. Appl. Meteor. Climatol., 50, 24452459, doi:10.1175/JAMC-D-11-054.1.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z., and H. Morrison, 2013: A novel scheme for parameterizing aerosol processing in warm clouds. J. Atmos. Sci., 70, 3576–3598, doi:10.1175/JAS-D-13-045.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., G. Feingold, and P. Y. Chuang, 2012: Effect of aerosol on cloud–environment interactions in trade cumulus. J. Atmos. Sci., 69, 36073632, doi:10.1175/JAS-D-12-026.1.

    • Search Google Scholar
    • Export Citation
  • Levin, Z., and W. R. Cotton, Eds., 2009: Aerosol Pollution Impact on Precipitation: A Scientific Review. Springer, 386 pp.

  • Li, Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888894, doi:10.1038/ngeo1313.

    • Search Google Scholar
    • Export Citation
  • Liu, C., K. Ikeda, G. Thompson, R. M. Rasmussen, and J. Dudhia, 2011: High-resolution simulations of wintertime precipitation in the Colorado Headwaters region: Sensitivity to physics parameterizations. Mon. Wea. Rev., 139, 35333553, doi:10.1175/MWR-D-11-00009.1.

    • Search Google Scholar
    • Export Citation
  • Makkonen, L., 2000: Models for the growth of rime, glaze, icicles and wet snow on structures. Philos. Trans. Roy. Soc. London, A358, 29132939, doi:10.1098/rsta.2000.0690.

    • Search Google Scholar
    • Export Citation
  • Molthan, A., and B. Colle, 2012: Comparisons of single- and double-moment microphysics schemes in the simulation of a synoptic-scale snowfall event. Mon. Wea. Rev., 140, 2982–3002, doi:10.1175/MWR-D-11-00292.1.

    • Search Google Scholar
    • Export Citation
  • Morales, R., and A. Nenes, 2010: Characteristic updrafts for computing distribution-averaged cloud droplet number and stratocumulus cloud properties. J. Geophys. Res., 115, D18220, doi:10.1029/2009JD013233.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. O. Pinto, 2005: Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62, 36833704, doi:10.1175/JAS3564.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2011: Cloud system-resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Atmos. Chem. Phys., 11, 10 50310 523, doi:10.5194/acp-11-10503-2011.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2013: Response of tropical deep convection to localized heating perturbations: Implications for aerosol-induced convective invigoration. J. Atmos. Sci., 70, 3533–3555, doi:10.1175/JAS-D-13-027.1.

    • Search Google Scholar
    • Export Citation
  • Murray, B. J., D. O’Sullivan, J. D. Atkinson, and M. E. Webb, 2012: Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev., 41, 65196554, doi:10.1039/c2cs35200a.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 19611971, doi:10.5194/acp-7-1961-2007.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 27572783, doi:10.1175/2007JAS2546.1.

    • Search Google Scholar
    • Export Citation
  • Podolskiy, E. A., B. E. K. Nygaard, K. Nishimura, L. Makkonen, and E. P. Lozowski, 2012: Study of unusual atmospheric icing at Mount Zao, Japan, using the Weather Research and Forecasting model. J. Geophys. Res., 117, D12106, doi:10.1029/2011JD017042.

    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and T. A. O. Bernstein, 2002: Aircraft icing conditions in northeast Colorado. J. Appl. Meteor., 41, 118132, doi:10.1175/1520-0450(2002)041<0118:AICINC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., D. Gong, J. Fan, L. R. Leung, R. Bennartz, D. Chen, and W. Wang, 2009: Heavy pollution suppresses light rain in China: Observations and modeling. J. Geophys. Res., 114, D00K02, doi:10.1029/2008JD011575.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, doi:10.1175/2010JCLI3985.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, doi:10.1175/BAMS-D-11-00052.1.

    • Search Google Scholar
    • Export Citation
  • Richardson, M. S., and Coauthors, 2007: Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res., 112, D02209, doi:10.1029/2006JD007500.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Coauthors, 2013: The common occurrence of highly supercooled drizzle and rain near the coastal regions of the western United States. J. Geophys. Res. Atmos., 118, 9819–9833, doi:10.1002/jgrd.50529.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182195, doi:10.1175/1520-0450(2004)043<0182:ALMAPN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2008: A binned approach to cloud-droplet riming implemented in a bulk microphysics model. J. Appl. Meteor. Climatol., 47, 694703, doi:10.1175/2007JAMC1664.1.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., W. R. Cotton, D. Lowenthal, R. D. Borys, and M. A. Wetzel, 2009: Influence of cloud condensation nuclei on orographic snowfall. J. Appl. Meteor. Climatol., 48, 903922, doi:10.1175/2008JAMC1989.1.

    • Search Google Scholar
    • Export Citation
  • Sand, W. R., W. A. Cooper, M. K. Politovich, and D. L. Veal, 1984: Icing conditions encountered by a research aircraft. J. Climate Appl. Meteor., 23, 14271440, doi:10.1175/0733-3021-23.10.1427.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., C. Köhler, and K. D. Beheng, 2012: Aerosol-cloud-precipitation effects over Germany as simulated by a convective scale numerical weather prediction model. Atmos. Chem. Phys., 12, 709725, doi:10.5194/acp-12-709-2012.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1989: A GCM parameterization for the shortwave radiative properties of water cloud. J. Atmos. Sci., 46, 14191427, doi:10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, A., G. Feingold, M. D. Lebsock, H. Jiang, and G. L. Stephens, 2010: Deconstructing the precipitation susceptibility construct: Improving methodology for aerosol–cloud precipitation studies. J. Geophys. Res., 115, D17201, doi:10.1029/2009JD013426.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S. C. Tsay, P. W. Stackhouse, and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47, 17421753, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.

    • Search Google Scholar
    • Export Citation
  • Teller, A., and Z. Levin, 2006: The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model. Atmos. Chem. Phys., 6, 6780, doi:10.5194/acp-6-67-2006.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256, doi:10.1016/0004-6981(74)90004-3.

  • van den Heever, S. C., G. L. Stephens, and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci., 68, 699718, doi:10.1175/2010JAS3603.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., L. Zhang, and M. D. Moran, 2010: Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain. Atmos. Chem. Phys., 10, 56855705, doi:10.5194/acp-10-5685-2010.

    • Search Google Scholar
    • Export Citation
  • Ward, D. S., T. Eidhammer, W. R. Cotton, and S. M. Kreidenweis, 2010: The role of the particle size distribution in assessing aerosol composition effects on simulated droplet activation. Atmos. Chem. Phys., 10, 54355447, doi:10.5194/acp-10-5435-2010.

    • Search Google Scholar
    • Export Citation
  • Wong, D. C., and Coauthors, 2012: WRF-CMAQ two-way coupled system with aerosol feedback: Software development and preliminary results. Geosci. Model Dev., 5, 299312, doi:10.5194/gmd-5-299-2012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9105 2901 568
PDF Downloads 6175 1618 174