The Sensitivity of a Numerically Simulated Idealized Squall Line to the Vertical Distribution of Aerosols

Zachary J. Lebo Cooperative Institute for Research in Environmental Sciences, University of Colorado, and Chemical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Zachary J. Lebo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Changes in the aerosol number concentration are reflected by changes in raindrop size and number concentration that ultimately affect the strength of cold pools via evaporation. Therefore, aerosol perturbations can potentially alter the balance between cold pool–induced and low-level wind shear–induced circulations. In the present work, simulations with increased aerosol loadings below approximately 3 km, between approximately 3 and 10 km, and at all vertical levels are performed to specifically address both the overall sensitivity of a squall line to the vertical distribution of aerosols and the extent to which low-level aerosols can affect the convective strength of the system. The results suggest that low-level aerosol perturbations have a negligible effect on the overall storm strength even though they act to enhance low-level latent heating rates. A tracer analysis shows that the low-level aerosols are either predominantly detrained at or below the freezing level or are rapidly lifted to the top of the troposphere or the lower stratosphere within the strongest convective cores. Moreover, it is shown that midlevel aerosol perturbations have nearly the same effect as perturbing the entire domain, increasing the convective updraft mass flux by more than 10%. These changes in strength are driven by a complex chain of events caused by smaller supercooled droplets, larger graupel, and larger raindrops. Combined, these changes tend to reduce the low-level bulk evaporation rate, thus weakening the cold pool and enhancing updraft strength. The results presented herein suggest that midlevel aerosol perturbations may exhibit a much larger effect on squall lines, at least in the context of this idealized framework.

Corresponding author address: Zachary J. Lebo, NOAA/Earth System Research Laboratory, 325 Broadway R/CSD-2, Boulder, CO 80305. E-mail: zach.lebo@noaa.gov

Abstract

Changes in the aerosol number concentration are reflected by changes in raindrop size and number concentration that ultimately affect the strength of cold pools via evaporation. Therefore, aerosol perturbations can potentially alter the balance between cold pool–induced and low-level wind shear–induced circulations. In the present work, simulations with increased aerosol loadings below approximately 3 km, between approximately 3 and 10 km, and at all vertical levels are performed to specifically address both the overall sensitivity of a squall line to the vertical distribution of aerosols and the extent to which low-level aerosols can affect the convective strength of the system. The results suggest that low-level aerosol perturbations have a negligible effect on the overall storm strength even though they act to enhance low-level latent heating rates. A tracer analysis shows that the low-level aerosols are either predominantly detrained at or below the freezing level or are rapidly lifted to the top of the troposphere or the lower stratosphere within the strongest convective cores. Moreover, it is shown that midlevel aerosol perturbations have nearly the same effect as perturbing the entire domain, increasing the convective updraft mass flux by more than 10%. These changes in strength are driven by a complex chain of events caused by smaller supercooled droplets, larger graupel, and larger raindrops. Combined, these changes tend to reduce the low-level bulk evaporation rate, thus weakening the cold pool and enhancing updraft strength. The results presented herein suggest that midlevel aerosol perturbations may exhibit a much larger effect on squall lines, at least in the context of this idealized framework.

Corresponding author address: Zachary J. Lebo, NOAA/Earth System Research Laboratory, 325 Broadway R/CSD-2, Boulder, CO 80305. E-mail: zach.lebo@noaa.gov
Save
  • Andreae, M. O., 2009: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmos. Chem. Phys., 9, 543556, doi:10.5194/acp-9-543-2009.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, doi:10.1126/science.1092779.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864, doi:10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and S. van den Heever, 2008: Evidence for the impact of aerosols on the onset and microphysical properties of rainfall from a combination of satellite observations and cloud-resolving model simulations. J. Geophys. Res., 113, D14S23, doi:10.1029/2007JD009649.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., E. W. McCaul Jr., G. P. Byrd, and G. R. Woodall, 1988: Mobile sounding observations of a tornadic storm near the dry line: The Canadian, Texas, storm of 7 May 1986. Mon. Wea. Rev., 116, 17901804, doi:10.1175/1520-0493(1988)116<1790:MSOOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., M. R. Hjelmefelt, and P. L. Smith, 2006: An observational examination of long-lived supercells. Part I: Characteristics, evolution, and demise. Wea. Forecasting, 21, 673688, doi:10.1175/WAF949.1.

    • Search Google Scholar
    • Export Citation
  • Ekman, A. M. L., A. Engstrom, and A. Soderberg, 2011: Impact of two-way aerosol–cloud interaction and changes in aerosol size distribution on simulated aerosol-induced deep convective cloud sensitivity. J. Atmos. Sci., 68, 685697, doi:10.1175/2010JAS3651.1.

    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, doi:10.1029/2009JD012352.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and P. S. Du Toit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8, 249253, doi:10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and Coauthors, 2004: Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei. Science, 304, 718722, doi:10.1126/science.1094947.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2006: Indirect impact of atmospheric aerosol in idealized simulations of convective–radiative quasi equilibrium. J. Climate, 19, 46644682, doi:10.1175/JCLI3857.1.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 68316864, doi:10.1029/96JD03436.

    • Search Google Scholar
    • Export Citation
  • Heiblum, R. H., I. Koren, and O. Altaratz, 2012: New evidence of cloud invigoration from TRMM measurements of rain center of gravity. Geophys. Res. Lett., 39, L08803, doi:10.1029/2012GL051158.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., M. I. Biggerstaf, S. A. Rutledge, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608–619, doi:10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46, 621640, doi:10.1175/1520-0469(1989)046<0621:VVCOOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khain, A., and B. Lynn, 2009: Simulation of a supercell storm in clean and dirty atmosphere using weather research and forecasting model with spectral bin microphysics. J. Geophys. Res., 114, D19209, doi:10.1029/2009JD011827.

    • Search Google Scholar
    • Export Citation
  • Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, doi:10.1175/JAS-3350.1.

    • Search Google Scholar
    • Export Citation
  • Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, doi:10.1256/qj.04.62.

    • Search Google Scholar
    • Export Citation
  • Khain, A., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748, doi:10.1175/2007JAS2515.1.

    • Search Google Scholar
    • Export Citation
  • Koren, I., J. V. Martins, L. A. Remer, and H. Afargan, 2008: Smoke invigoration versus inhibition of clouds over the Amazon. Science, 321, 946949, doi:10.1126/science.1159185.

    • Search Google Scholar
    • Export Citation
  • Koren, I., G. Feingold, and L. A. Remer, 2010a: The invigoration of deep convective clouds of the Atlantic: Aerosol effect, meteorology, or retrieval artifact? Atmos. Chem. Phys., 10, 88558872, doi:10.5194/acp-10-8855-2010.

    • Search Google Scholar
    • Export Citation
  • Koren, I., L. A. Remer, O. Altaratz, J. V. Martins, and A. Davidi, 2010b: Aerosol-induced changes of convective cloud anvils produce strong climate warming. Atmos. Chem. Phys., 10, 50015010, doi:10.5194/acp-10-5001-2010.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and J. H. Seinfeld, 2011: Theoretical basis for convective invigoration due to increased aerosol concentration. Atmos. Chem. Phys., 11, 54075429, doi:10.5194/acp-11-5407-2011.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2014: Dynamical effects of aerosol perturbations on simulated idealized squall lines. Mon. Wea. Rev., 142,9911009, doi:10.1175/MWR-D-13-00156.1.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., H. Morrison, and J. H. Seinfeld, 2012: Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmos. Chem. Phys., 12, 99419964, doi:10.5194/acp-12-9941-2012.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., 2011: Dependence of aerosol-precipitation interactions on humidity in a multiple-cloud system. Atmos. Chem. Phys., 11, 21792196, doi:10.5194/acp-11-2179-2011.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., L. J. Donner, V. T. J. Phillips, and Y. Ming, 2008a: The dependence of aerosol effects on clouds and precipitation on cloud-system organization, shear and stability. J. Geophys. Res., 113, D16202, doi:10.1029/2007JD009224.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., L. J. Donner, V. T. J. Phillips, and Y. Ming, 2008b: Examination of aerosol effects on precipitation in deep convective clouds during the 1997 ARM summer experiment. Quart. J. Roy. Meteor. Soc., 134, 12011220, doi:10.1002/qj.287.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

  • May, P. T., V. N. Bringi, and M. Thurai, 2011: Do we observe aerosol impacts on DSDs in strongly forced tropical thunderstorms? J. Atmos. Sci., 68, 19021910, doi:10.1175/2011JAS3617.1.

    • Search Google Scholar
    • Export Citation
  • Mitra, S. K., J. Brinkmann, and H. T. Pruppacher, 1992: A wind tunnel study on the drop-to-particle conversion. J. Aerosol Sci., 23, 245256, doi:10.1016/0021-8502(92)90326-Q.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2012: On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model. Atmos. Chem. Phys. Discuss., 12, 10 493–10 533, doi:10.5194/acpd-12-10493-2012.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., S. A. Tessendorf, J. Ikeda, and G. Thompson, 2012: Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. Mon. Wea. Rev., 140, 24372460, doi:10.1175/MWR-D-11-00283.1.

    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., and Coauthors, 2013: Reexamination of the state of the art of cloud modeling shows real improvements. Bull. Amer. Meteor. Soc., 94, ES45–ES48, doi:10.1175/BAMS-D-12-00188.1.

    • Search Google Scholar
    • Export Citation
  • Noppel, H., U. Blahak, A. Seifert, and K. D. Beheng, 2010: Simulations of a hailstorm and the impact of CCN using an advanced two-moment cloud microphysics scheme. Atmos. Res., 96, 286301, doi:10.1016/j.atmosres.2009.09.008.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, doi:10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 954 pp.

  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484, doi:10.1175/2009JAS3184.1.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and W. L. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature, 405, 440442, doi:10.1038/35013030.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, doi:10.1126/science.1160606.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., C. Köhler, and K. D. Beheng, 2012: Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmos. Chem. Phys., 12, 709725, doi:10.5194/acp-12-709-2012.

    • Search Google Scholar
    • Export Citation
  • Seigel, R. B., and S. C. van den Heever, 2013: Squall-line intensification via hydrometeor recirculation. J. Atmos. Sci., 70, 20122031, doi:10.1175/JAS-D-12-0266.1.

    • Search Google Scholar
    • Export Citation
  • Seigel, R. B., S. C. van den Heever, and S. M. Saleeby, 2013: Mineral dust indirect effects and cloud radiative feedbacks of a simulated idealized nocturnal squall line. Atmos. Chem. Phys., 13, 44674485, doi:10.5194/acp-13-4467-2013.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., 1971: On cumulus entrainment and one-dimensional models. J. Atmos. Sci., 28, 449455, doi:10.1175/1520-0469(1971)028<0449:OCEAOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Storer, R. L., and S. C. van den Heever, 2013: Microphysical processes evident in aerosol forcing of tropical deep convection. J. Atmos. Sci., 70, 430446, doi:10.1175/JAS-D-12-076.1.

    • Search Google Scholar
    • Export Citation
  • Storer, R. L., S. C. van den Heever, and G. L. Stephens, 2010: Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci., 67, 39043915, doi:10.1175/2010JAS3363.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res.,112, D24S18, doi:10.1029/2007JD008728.

  • Teller, A., and Z. Levin, 2006: The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model. Atmos. Chem. Phys., 6, 6780, doi:10.5194/acp-6-67-2006.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, doi:10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., 2013: Mesoscale-Convective Processes in the Atmosphere. Cambridge University Press, 377 pp.

  • Van den Heever, S. C., and W. R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteor. Climatol., 46, 828850, doi:10.1175/JAM2492.1.

    • Search Google Scholar
    • Export Citation
  • Van den Heever, S. C., G. G. Carri, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775, doi:10.1175/JAS3713.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2005: A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res., 110, D21211, doi:10.1029/2004JD005720.

    • Search Google Scholar
    • Export Citation
  • Xu, K., and D. A. Randall, 2001: Updraft and downdraft statistics of simulated tropical and midlatitude cumulus convection. J. Atmos. Sci., 58, 16301649, doi:10.1175/1520-0469(2001)058<1630:UADSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuan, T., L. A. Remer, K. E. Pickering, and H. Yu, 2011: Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys. Res. Lett., 38, L04701, doi:10.1029/2010GL046052.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., M. A. Miller, M. D. Parker, P. M. Markowski, Y. Richardson, H. Brooks, and J. M. Straka, 2013: Comment on “Why do tornados and hailstorms rest on weekends?” by D. Rosenfeld and T. Bell. J. Geophys. Res. Atmos., 118, 7332–7338, doi:10.1002/jgrd.50526.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. R. Mansell, J. M. Straka, D. R. MacGorman, and D. W. Burgess, 2010: The impact of spatial variations of low-level stability on the life cycle of a simulated supercell storm. Mon. Wea. Rev., 138, 17381766, doi:10.1175/2009MWR3010.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 507 143 26
PDF Downloads 267 57 2