• Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230.

  • Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part II. Single initial distributions. J. Atmos. Sci., 31, 18251831.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 1992: Monotone flux limitation in the area-preserving flux-form advection algorithm. Mon. Wea. Rev., 120, 25922602.

  • Bott, A., U. Sievers, and W. Zdunkowski, 1990: A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics. J. Atmos. Sci., 47, 21532166.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 16581680.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, and Coauthors, 2012: Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Climate Dyn., 39, 399–418, doi:10.1007/s00382-011-1127-9.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., W. M. Gray, and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part I: General statistics. Mon. Wea. Rev., 133, 188208.

    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, doi:10.1029/2009JD012352.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., M. A. LeMone, and S. B. Trier, 1997: Structure and Evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations of precipitation, circulation, and surface energy fluxes. J. Atmos. Sci., 54, 19611985.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Khain, A. P., 2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004, doi:10.1088/1748-9326/4/1/015004.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and A. Pokrovsky, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part II: Sensitivity study. J. Atmos. Sci., 61, 29833001.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, and A. Pokrovsky, 2001: Simulating convective clouds with sustained supercooled liquid water down to −37.5°C using a spectral microphysics model. Geophys. Res. Lett., 28, 38873890.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description. J. Atmos. Sci., 61, 29632982.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and K. Sassen, 1998: Cirrus cloud simulation using explicit microphysics and radiation. Part I: Model description. J. Atmos. Sci., 55, 18081821.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., and W. J. Martin, 1994: Parameterization of bulk condensation in numerical cloud model. J. Atmos. Sci., 51, 17281739.

  • Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, doi:10.1029/2005GL023187.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., 2012: Effect of aerosols on circulation and precipitation in deep convective clouds. J. Atmos. Sci., 69, 19571974.

  • Lee, S. S., L. J. Donner, V. T. J. Phillips, and Y. Ming, 2008: The dependence of aerosol effects on clouds and precipitation on cloud-system organization, shear and stability. J. Geophys. Res., 113, D16202, doi:10.1029/2007JD009224.

    • Search Google Scholar
    • Export Citation
  • Lin, J. C., T. Matsui, R. A. Pielke Sr., and C. Kummerow, 2006: Effects of biomass-burning-derived aerosols onprecipitation and clouds in the Amazon Basin: A satellite-based empirical study. J. Geophys. Res., 111, D19204, doi:10.1029/2005JD006884.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2002: Possible aerosol effects on ice clouds via contact nuclei. J. Atmos. Sci., 59, 647656.

  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715737.

  • Lohmann, U., J. Feichter, J. Penner, and R. Leaitch, 2000: Indirect effect of sulfate and carbonaceous aerosols: A mechanistic treatment. J. Geophys. Res., 105 (D10), 12 19312 206.

    • Search Google Scholar
    • Export Citation
  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Masunaga, H., T. Y. Nakajima, T. Nakajima, M. Kachi, and K. Suzuki, 2002: Physical properties of maritime low clouds as retrieved by combined use of Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Visible/Infrared Scanner, 2. Climatology of warm clouds and rain. J. Geophys. Res., 107, 4367, doi:10.1029/2001JD001269.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J., and M. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723.

    • Search Google Scholar
    • Export Citation
  • Miura, H., 2007: An upwind-biased conservative advection scheme for spherical hexagonal–pentagonal grids. Mon. Wea. Rev., 135, 40384044.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and G. G. Grabowski, 2011: Cloud-system resolving model simulations of aerosols indirect effects on tropical deep convection and its thermodynamic environment. Atmos. Chem. Phys., 11, 10 50310 523.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor-Yamada Level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., H. Tomita, M. Satoh, and R. Imasu, 2011: A three-dimensional icosahedral grid advection scheme preserving monotonicity and consistency with continuity for atmospheric tracer transport. J. Meteor. Soc. Japan, 89, 255269.

    • Search Google Scholar
    • Export Citation
  • Noda, A. T., K. Oouchi, M. Satoh, H. Tomita, S. Iga, and Y. Tsushima, 2010: Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations. Atmos. Res., 96, 208217.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., L. J. Donner, and S. T. Garner, 2007: Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics. J. Atmos. Sci., 64, 738761.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., and Coauthors, 2000: A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. I: Cloud-resolving models. Quart. J. Roy. Meteor. Soc., 126, 823863.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Pergamon Press, 293 pp.

  • Rogers, R. R., D. Baumgardner, S. A. Ethier, D. A. Carter, and W. L. Ecklund, 1993: Comparison of raindrop size distributions measured by radar wind profiler and by airplane. J. Appl. Meteor., 32, 694699.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and G. Gutman, 1994: Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data. Atmos. Res., 34, 259283.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287.

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485.

  • Satoh, M., and Y. Matsuda, 2009: Statistics on high-cloud areas and their sensitivities to cloud microphysics using single-cloud experiments. J. Atmos. Sci., 66, 26592677.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic icosahedaral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Coauthors, 2011: The Intra-Seasonal Oscillation and its control of tropical cyclones simulated by high-resolution global atmospheric models. Climate Dyn., 39, 2185–2206, doi:10.1007/s00382-011-1235-6.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., 2008: On the parameterization of evaporation of raindrops as simulated by a one-dimensional Rainshaft model. J. Atmos. Sci., 65, 36083619.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res., 59–60, 265281.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006a: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part I: Model description. Meteor. Atmos. Phys., 92, 4566.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006b: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part II: Maritime vs. continental deep convective storms. Meteor. Atmos. Phys., 92, 6782.

    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., and T. Nakajima, 2008: A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transfer, 109, 27792793.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., P. A. Kucera, B. S. Ferrier, J. C. Gerlach, S. A. Rutledge, and O. W. Thiele, 1997: Shipboard radar rainfall patterns within the TOGA COARE IFA. Bull. Amer. Meteor. Soc., 78, 28172836.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607–613, doi:10.1038/nature08281.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., T. Nakajima, T. Y. Nakajima, and A. P. Khain, 2010: A study of microphysical mechanisms for correlation patterns between droplet radius and optical thickness of water clouds with a spectral bin microphysics cloud model. J. Atmos. Sci., 67, 11261141.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., X. Li, A. P. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, doi:10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., 2008: A stretched icosahedral grid by a new grid transformation. J. Meteor. Soc. Japan, 86A, 121142.

  • Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357400.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure Appl. Geophys., 43, 243249.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152.

  • Wang, C., 2005: A modelling study of the response of tropical deep convection to the increase of cloud condensational nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res., 110, D21211, doi:10.1029/2004JD005720.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 561 253 33
PDF Downloads 415 167 23

Aerosol Effects of the Condensation Process on a Convective Cloud Simulation

Tatsuya SeikiRIKEN Advanced Institute for Computational Science, Hyogo, Japan

Search for other papers by Tatsuya Seiki in
Current site
Google Scholar
PubMed
Close
and
Teruyuki NakajimaAtmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Teruyuki Nakajima in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using a nonhydrostatic model with a double-moment bulk cloud microphysics scheme, the authors introduce an aerosol effect on a convective cloud system by accelerating the condensation and evaporation processes (the aerosol condensational effect). To evaluate this effect, the authors use an explicit condensation scheme rather than the saturation adjustment method and propose a method to isolate the aerosol condensational effect. This study shows that the aerosol condensational effect not only accelerates growth rates but also increases cloud water, even though the degree of the acceleration of evaporation exceeds that of condensation. In the early developing stage of the convective system, increased cloud water is, in turn, linked to ice-phase processes and modifies the ice water path of anvil clouds and the ice cloud fraction. In the mature stage, although the aerosol condensational effect has a secondary role in dynamical feedbacks when combined with other aerosol effects, the degree of modulation of the cloud microphysical parameters by the aerosol condensational effect continues to be nonnegligible. These findings indicate that feedback mechanisms, such as latent heat release and the interaction of various aerosol effects, are important in convective cloud systems that involve ice-phase processes.

Corresponding author address: Tatsuya Seiki, RIKEN Advanced Institute for Computational Sciences, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan. E-mail: tseiki@riken.jp

Abstract

Using a nonhydrostatic model with a double-moment bulk cloud microphysics scheme, the authors introduce an aerosol effect on a convective cloud system by accelerating the condensation and evaporation processes (the aerosol condensational effect). To evaluate this effect, the authors use an explicit condensation scheme rather than the saturation adjustment method and propose a method to isolate the aerosol condensational effect. This study shows that the aerosol condensational effect not only accelerates growth rates but also increases cloud water, even though the degree of the acceleration of evaporation exceeds that of condensation. In the early developing stage of the convective system, increased cloud water is, in turn, linked to ice-phase processes and modifies the ice water path of anvil clouds and the ice cloud fraction. In the mature stage, although the aerosol condensational effect has a secondary role in dynamical feedbacks when combined with other aerosol effects, the degree of modulation of the cloud microphysical parameters by the aerosol condensational effect continues to be nonnegligible. These findings indicate that feedback mechanisms, such as latent heat release and the interaction of various aerosol effects, are important in convective cloud systems that involve ice-phase processes.

Corresponding author address: Tatsuya Seiki, RIKEN Advanced Institute for Computational Sciences, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan. E-mail: tseiki@riken.jp
Save