• Bechtold, P., J. Chaboureau, A. Beljaars, A. Betts, M. Köhler, M. Miller, and J. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137.

    • Search Google Scholar
    • Export Citation
  • Boing, S., H. Jonker, A. Siebesma, and W. Grabowski, 2010: Influence of subcloud-layer structures on the transition to deep convection. Preprints, 19th Symp. on Boundary Layers and Turbulence, Keystone, CO, Amer. Meteor. Soc., P4.4. [Available online at https://ams.confex.com/ams/pdfpapers/172640.pdf.]

  • Chaboureau, J., F. Guichard, J. Redelsperger, and J. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection over land. Quart. J. Roy. Meteor. Soc., 130, 31053117.

    • Search Google Scholar
    • Export Citation
  • Clark, T., T. Hauf, and J. Kuettner, 1986: Convectively forced internal gravity waves: Results from two-dimensional numerical experiments. Quart. J. Roy. Meteor. Soc., 112, 899925.

    • Search Google Scholar
    • Export Citation
  • Cohen, B. G., and G. C. Craig, 2006: Fluctuations in an equilibrium convective ensemble. Part II: Numerical experiments. J. Atmos. Sci., 63, 20052015.

    • Search Google Scholar
    • Export Citation
  • Couvreux, F., C. Rio, F. Guichard, M. Lothon, G. Canut, D. Bouniol, and A. Gounou, 2012: Initiation of daytime local convection in a semi-arid region analysed with high-resolution simulations and AMMA observations. Quart. J. Roy. Meteor. Soc., 138, 5671.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and B. Cohen, 2006: Fluctuations in an equilibrium convective ensemble. Part I: Theoretical formulation. J. Atmos. Sci., 63, 19962004.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and A. Dörnbrack, 2008: Entrainment in cumulus clouds: What resolution is cloud-resolving? J. Atmos. Sci., 65, 39783988.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., G. Vali, and S. Haimov, 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 14321450.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A., and J. Wu, 2010: The role of entrainment in the diurnal cycle of continental convection. J. Climate, 23, 27222738.

  • Donner, L. J., 1993: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci., 50, 889906.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 23132335.

  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W., and Coauthors, 2006: Daytime convective development over land: A model intercomparison based on LBA observations. Quart. J. Roy. Meteor. Soc., 132, 317344.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J., and J. Lafore, 2010: A density current parameterization coupled with Emanuel’s convection scheme. Part I: The models. J. Atmos. Sci., 67, 881897.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J., J. Lafore, and F. Cheruy, 2010: A density current parameterization coupled with Emanuel’s convection scheme. Part II: 1d simulations. J. Atmos. Sci., 67, 898922.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172.

    • Search Google Scholar
    • Export Citation
  • Heus, T., H. J. Jonker, H. E. Van den Akker, E. J. Griffith, M. Koutek, and F. H. Post, 2009: A statistical approach to the life cycle analysis of cumulus clouds selected in a virtual reality environment. J. Geophys. Res.,114, D06208, doi:10.1029/2008JD010917.

  • Jones, T., and D. Randall, 2011: Quantifying the limits of convective parameterizations. J. Geophys. Res.,116, D08210, doi:10.1029/2010JD014913.

  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436.

    • Search Google Scholar
    • Export Citation
  • Lafore, J., and Coauthors, 1998: The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16, 90109.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and W. T. Pennell, 1976: The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Mon. Wea. Rev., 104, 524539.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., B. Campistron, M. Chong, F. Couvreux, F. Guichard, C. Rio, and E. Williams, 2011: Life cycle of a mesoscale circular gust front observed by a c-band doppler radar in west africa. Mon. Wea. Rev., 139, 13701388.

    • Search Google Scholar
    • Export Citation
  • Malkus, J., 1954: Some results of a trade-cumulus cloud investigation. J. Meteor., 11, 220237.

  • Mapes, B., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535.

    • Search Google Scholar
    • Export Citation
  • Matheou, G., D. Chung, L. Nuijens, B. Stevens, and J. Teixeira, 2011: On the fidelity of large-eddy simulation of shallow precipitating cumulus convection. Mon. Wea. Rev., 139, 29182939.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., A. Hall, and B. Stevens, 2005: What controls the mean depth of the PBL? J. Climate, 18, 31573172.

  • Neelin, J., O. Peters, J. Lin, K. Hales, and C. Holloway, 2008: Rethinking convective quasi-equilibrium: Observational constraints for stochastic convective schemes in climate models. Philos. Trans. Roy. Soc. London, A366, 25792602.

    • Search Google Scholar
    • Export Citation
  • Neggers, R., H. Jonker, and A. Siebesma, 2003: Size statistics of cumulus cloud populations in large-eddy simulations. J. Atmos. Sci., 60, 10601074.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2012: Towards the probabilistic earth-system simulator: a vision for the future of climate and weather prediction. Quart. J. Roy. Meteor. Soc., 138, 841861.

    • Search Google Scholar
    • Export Citation
  • Plant, R., and G. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87105.

    • Search Google Scholar
    • Export Citation
  • Raymond, D., and M. Herman, 2011: Convective quasi-equilibrium reconsidered. J. Adv. Model. Earth Syst.,3, M08003, doi:10.1029/2011MS000079.

  • Rio, C., and F. Hourdin, 2008: A thermal plume model for the convective boundary layer: Representation of cumulus clouds. J. Atmos. Sci., 65, 407425.

    • Search Google Scholar
    • Export Citation
  • Rio, C., F. Hourdin, J. Grandpeix, and J. Lafore, 2009: Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett.,36, L07809, doi:10.1029/2008GL036779.

  • Rochetin, N., J.-Y. Grandpeix, C. Rio, and F. Couvreux, 2014: Deep convection triggering by boundary layer thermals. Part II: Stochastic triggering parameterization for the LMDZ GCM. J. Atmos. Sci.,71, 515–538.

  • Rodts, S., P. Duynkerke, and H. Jonker, 2003: Size distributions and dynamical properties of shallow cumulus clouds from aircraft observations and satellite data. J. Atmos. Sci., 60, 18951912.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and T. Heus, 2013: Large-eddy simulation of organized precipitating trade wind cumulus clouds. Atmos. Chem. Phys. Discuss., 13, 1855–1889, doi:10.5194/acpd-13-1855-2013.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and J. D. Neelin, 2011: A stochastic model for the transition to strong convection. J. Atmos. Sci., 68, 29552970.

  • Taylor, C., A. Gounou, F. Guichard, P. Harris, R. Ellis, F. Couvreux, and M. De Kauwe, 2011: Frequency of sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430433.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1970: The microstructure of cumulus cloud. Part III: The nature of the updraft. J. Atmos. Sci., 27, 682688.

  • Wu, C., B. Stevens, and A. Arakawa, 2009: What controls the transition from shallow to deep convection? J. Atmos. Sci., 66, 17931806.

    • Search Google Scholar
    • Export Citation
  • Xu, K., A. Arakawa, and S. Krueger, 1992: The macroscopic behavior of cumulus ensembles simulated by a cumulus ensemble model. J. Atmos. Sci., 49, 24022420.

    • Search Google Scholar
    • Export Citation
  • Yang, G., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

  • Zhao, M., and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport. J. Atmos. Sci., 62, 12691290.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 393 154 23
PDF Downloads 310 99 12

Deep Convection Triggering by Boundary Layer Thermals. Part I: LES Analysis and Stochastic Triggering Formulation

Nicolas RochetinLaboratoire de Météorologie Dynamique, Paris, France

Search for other papers by Nicolas Rochetin in
Current site
Google Scholar
PubMed
Close
,
Fleur CouvreuxCNRM-GAME, Météo-France and CNRS, Toulouse, France

Search for other papers by Fleur Couvreux in
Current site
Google Scholar
PubMed
Close
,
Jean-Yves GrandpeixLaboratoire de Météorologie Dynamique, Paris, France

Search for other papers by Jean-Yves Grandpeix in
Current site
Google Scholar
PubMed
Close
, and
Catherine RioLaboratoire de Météorologie Dynamique, Paris, France

Search for other papers by Catherine Rio in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper proposes a new formulation of the deep convection triggering for general circulation model convective parameterizations. This triggering is driven by evolving properties of the strongest boundary layer thermals. To investigate this, a statistical analysis of large-eddy simulation cloud fields in a case of transition from shallow to deep convection over a semiarid land is carried out at different stages of the transition from shallow to deep convection. Based on the dynamical and geometrical properties at cloud base, a new computation of the triggering is first proposed. The analysis of the distribution law of the maximum size of the thermals suggests that, in addition to this necessary condition, another triggering condition is required, that is, that this maximum horizontal size should exceed a certain threshold. This is explicitly represented stochastically. Therefore, the new formulation integrates the whole transition process from the first cloud to the first deep convective cell and can be decomposed into three steps: (i) the appearance of clouds, (ii) crossing of the inhibition layer, and (iii) deep convection triggering.

Corresponding author address: Nicolas Rochetin, Laboratoire de Météorologie Dynamique, Boite 99, 4, place Jussieu, F-75252 Paris CEDEX 05, France. E-mail: nicolas.rochetin@lmd.jussieu.fr

Abstract

This paper proposes a new formulation of the deep convection triggering for general circulation model convective parameterizations. This triggering is driven by evolving properties of the strongest boundary layer thermals. To investigate this, a statistical analysis of large-eddy simulation cloud fields in a case of transition from shallow to deep convection over a semiarid land is carried out at different stages of the transition from shallow to deep convection. Based on the dynamical and geometrical properties at cloud base, a new computation of the triggering is first proposed. The analysis of the distribution law of the maximum size of the thermals suggests that, in addition to this necessary condition, another triggering condition is required, that is, that this maximum horizontal size should exceed a certain threshold. This is explicitly represented stochastically. Therefore, the new formulation integrates the whole transition process from the first cloud to the first deep convective cell and can be decomposed into three steps: (i) the appearance of clouds, (ii) crossing of the inhibition layer, and (iii) deep convection triggering.

Corresponding author address: Nicolas Rochetin, Laboratoire de Météorologie Dynamique, Boite 99, 4, place Jussieu, F-75252 Paris CEDEX 05, France. E-mail: nicolas.rochetin@lmd.jussieu.fr
Save