• Bechtold, P., J.-P. Chaboureau, A. Beljaars, A. K. Betts, M. Kohler, M. Miller, and J.-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, doi:10.1256/qj.03.103.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and M. L. Salby, 1997: The role of cloud diurnal variations in the time-mean energy budget. J. Climate, 10, 11141124.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., D. Dee, K. Fielding, M. Fuentes, P. Kallberg, S. Kobayashi, and S. Uppala, 2009: The ERA-Interim archive. European Center for Medium-Range Weather Forecasts Tech. Rep. 1, 16 pp.

  • Caldwell, P., C. S. Bretherton, and R. Wood, 2005: Mixed-layer budget analysis of the diurnal cycle of entrainment in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37753791.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and J. Wu, 2010: The role of entrainment in the diurnal cycle of continental convection. J. Climate, 23, 27222738.

  • Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188.

  • Harrison, E. F., D. R. Brooks, P. Minnis, B. A. Wielicki, W. F. Staylor, G. G. Gibson, D. F. Young, and F. M. Denn, 1988: First estimates of the diurnal variation of longwave radiation from the multiple-satellite Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 69, 11441151.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and E. E. Recker, 1986: Diurnal variation of outgoing longwave radiation in the tropics. J. Climate Appl. Meteor., 25, 800812.

    • Search Google Scholar
    • Export Citation
  • Herdies, D. L., A. Da Silva, and M. A. F. Silva Dias, 2002: Moisture budget of the bimodal pattern of the summer circulation over South America. J. Geophys. Res., 107, 8075, doi:10.1029/2001JD000997.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., P. A. Arkin, and M. Morrissey, 1994: An examimation of the diurnal cycle in oceanic tropical rainfall using satellite and in situ data. Mon. Wea. Rev., 122, 22962311.

    • Search Google Scholar
    • Export Citation
  • Lin, X., D. A. Randall, and L. D. Fowler, 2000: Diurnal variability of the hydrologic cycle and radiative fluxes: Comparisons between observations and a GCM. J. Climate, 13, 41594179.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and E. F. Harrison, 1984: Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part I: Analysis method. J. Climate Appl. Meteor., 23, 9931011.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475.

    • Search Google Scholar
    • Export Citation
  • Pereira, L. G., and S. A. Rutledge, 2006: Diurnal cycle of shallow and deep convection of a tropical land and an ocean environment and its relationship to synoptic wind regimes. Mon. Wea. Rev., 134, 26882701.

    • Search Google Scholar
    • Export Citation
  • Raschke, E., and W. R. Bandeen, 1970: The radiation balance of the planet earth from radiation measurements of the satellite Nimbus II. J. Appl. Meteor., 9, 215238.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., R. N. Ferreira, J. Halverson, D. L. Herdies, and M. A. F. Silva Dias, 2002: Modulation of convection in the southwestern Amazon basin by extratropical stationary fronts. J. Geophys. Res., 107, 8040, doi:10.1029/2000JD000263.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., and A. H. Miller, 1978: Differences between morning and evening temperatures of cloud tops over tropical continents and oceans. Quart. J. Roy. Meteor. Soc., 104, 757764.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M. A., C. B. Leovy, and S. A. Klein, 1995: An observational study of diurnal variation of marine stratiform cloud. J. Climate, 8, 17951809.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., and J. M. Wallace, 1980: Satellite-inferred morning-to-evening cloudiness changes. Mon. Wea. Rev., 108, 11601169.

  • Smith, G. L., and D. A. Rutan, 2003: The diurnal cycle of outgoing longwave radiation from Earth Radiation Budget Experiment measurements. J. Atmos. Sci., 60, 15291542.

    • Search Google Scholar
    • Export Citation
  • Strong, C., J. D. Fuentes, M. Garstang, and A. K. Betts, 2005: Daytime cycle of low-level clouds and the tropical convective boundary layer in southwestern Amazonia. J. Appl. Meteor., 44, 16071619.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., 2012: Tropical outgoing longwave radiation and longwave cloud forcing diurnal cycles from Clouds and Earth’s Radiant Energy System (CERES). J. Atmos. Sci., 69, 36523669.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., and N. G. Loeb, 2013: Impact of sun-synchronous diurnal sampling on tropical TOA flux interannual variability and trends. J. Climate, 26, 21842191.

    • Search Google Scholar
    • Export Citation
  • Turton, J. D., and S. Nicholls, 1987: A study of the diurnal variation of stratocumulus using a multiple mixed layer model. Quart. J. Roy. Meteor. Soc., 113, 9691009.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

  • Yang, S., K.-S. Kuo, and E. A. Smith, 2008: Persistent nature of secondary diurnal modes of precipitation over oceanic and continental regimes. J. Climate, 21, 41154131.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 207 142 22
PDF Downloads 64 29 5

Variability of Monthly Diurnal Cycle Composites of TOA Radiative Fluxes in the Tropics

Patrick C. TaylorNASA Langley Research Center, Climate Science Branch, Hampton, Virginia

Search for other papers by Patrick C. Taylor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Earth system variability is generated by a number of different sources and time scales. Understanding sources of atmospheric variability is critical to reducing the uncertainty in climate models and to understanding the impacts of sampling on observational datasets. The diurnal cycle is a fundamental variability evident in many geophysical variables—including top-of-the-atmosphere (TOA) radiative fluxes. This study considers aspects of the TOA flux diurnal cycle not previously analyzed: namely, deseasonalized variations in the monthly diurnal cycle composites, termed monthly diurnal cycle variability. Significant variability in the monthly diurnal cycle composites is found in both outgoing longwave radiation (OLR) and reflected shortwave (RSW). OLR and RSW monthly diurnal cycle variability exhibits a regional structure that follows traditional, climatological diurnal cycle categorization by prevailing cloud and surface types. The results attribute monthly TOA flux diurnal cycle variability to variations in the diurnal cloud evolution, which is sensitive to monthly atmospheric dynamic- and thermodynamic-state anomalies. The results also suggest that monthly diurnal cycle variability can amplify or buffer monthly TOA flux anomalies, depending on the region. Considering the impact of monthly diurnal cycle variability on monthly TOA flux anomalies, the results suggest that monthly TOA flux diurnal cycle variability must be considered when constructing a TOA flux dataset from sun-synchronous orbit. The magnitude of monthly diurnal composite variability in OLR and RSW is regionally dependent—1–7 W m−2 and 10%–80% relative to interannual TOA flux variability. The largest (4–7 W m−2; 40%–80%) and smallest (1–3 W m−2; 10%–30%) TOA flux uncertainties occur in convective and nonconvective regions, respectively, over both land and ocean.

Denotes Open Access content.

Corresponding author address: Patrick Taylor, NASA Langley Research Center, 21 Langley Blvd., Mail Stop 420, Hampton, VA 23681. E-mail: patrick.c.taylor@nasa.gov

Abstract

Earth system variability is generated by a number of different sources and time scales. Understanding sources of atmospheric variability is critical to reducing the uncertainty in climate models and to understanding the impacts of sampling on observational datasets. The diurnal cycle is a fundamental variability evident in many geophysical variables—including top-of-the-atmosphere (TOA) radiative fluxes. This study considers aspects of the TOA flux diurnal cycle not previously analyzed: namely, deseasonalized variations in the monthly diurnal cycle composites, termed monthly diurnal cycle variability. Significant variability in the monthly diurnal cycle composites is found in both outgoing longwave radiation (OLR) and reflected shortwave (RSW). OLR and RSW monthly diurnal cycle variability exhibits a regional structure that follows traditional, climatological diurnal cycle categorization by prevailing cloud and surface types. The results attribute monthly TOA flux diurnal cycle variability to variations in the diurnal cloud evolution, which is sensitive to monthly atmospheric dynamic- and thermodynamic-state anomalies. The results also suggest that monthly diurnal cycle variability can amplify or buffer monthly TOA flux anomalies, depending on the region. Considering the impact of monthly diurnal cycle variability on monthly TOA flux anomalies, the results suggest that monthly TOA flux diurnal cycle variability must be considered when constructing a TOA flux dataset from sun-synchronous orbit. The magnitude of monthly diurnal composite variability in OLR and RSW is regionally dependent—1–7 W m−2 and 10%–80% relative to interannual TOA flux variability. The largest (4–7 W m−2; 40%–80%) and smallest (1–3 W m−2; 10%–30%) TOA flux uncertainties occur in convective and nonconvective regions, respectively, over both land and ocean.

Denotes Open Access content.

Corresponding author address: Patrick Taylor, NASA Langley Research Center, 21 Langley Blvd., Mail Stop 420, Hampton, VA 23681. E-mail: patrick.c.taylor@nasa.gov
Save