• Bateni, S. M., and D. Entekhabi, 2012: Relative efficiency of land surface energy balance components. Water Resour. Res., 48, W04510, doi:10.1029/2011WR011357.

    • Search Google Scholar
    • Export Citation
  • Bellon, G., and B. Stevens, 2005: On bulk models of shallow cumulus convection. J. Atmos. Sci., 62, 32863302.

  • Betts, A. K., 2007: Coupling of water vapor convergence, clouds, precipitation, and land-surface processes. J. Geophys. Res., 112, D10108, doi:10.1029/2006JD008191.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and W. Ridgway, 1988: Coupling of the radiative, convective, and surface fluxes over the equatorial Pacific. J. Atmos. Sci., 45, 522536.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2008: A new bulk shallow-cumulus model and implications for penetrative entrainment feedback on updraft buoyancy. J. Atmos. Sci., 65,21742193.

    • Search Google Scholar
    • Export Citation
  • Brown, A., and Coauthors, 2002: Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quart. J. Roy. Meteor. Soc., 128, 10751093.

    • Search Google Scholar
    • Export Citation
  • Canut, G., M. Lothon, F. Said, and , F. Lohou, 2010: Observation of entrainment at the interface between monsoon flow and the Saharan air layer. Quart. J. Roy. Meteor. Soc.,136, 34–46, doi:10.1002/qj.471.

  • Chen, F., and Coauthors, 2007: Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J. Appl. Meteor. Climatol., 46 (6), 694713.

    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., and E. Fedorovich, 2006: Dynamics of sheared convective boundary layer entrainment. Part I: Methodological background and large-eddy simulations. J. Atmos. Sci., 63, 11511178.

    • Search Google Scholar
    • Export Citation
  • Courant, R., K. Friedrichs, and H. Lewy, 1967: On the partial difference equations of mathematical physics. IBM J. Res. Develop., 11, 215234.

    • Search Google Scholar
    • Export Citation
  • Courault, D., P. Drobinski, Y. Brunet, P. Lacarrere, and C. Talbot, 2007: Impact of surface heterogeneity on a buoyancy-driven convective boundary layer in light winds. Bound.-Layer Meteor., 124, 383403, doi:10.1007/s10546-007-9172-y.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970: A three-dimensional numerical investigation of the idealized planetary boundary layer. Geophys. Fluid Dyn., 1, 377410, doi:10.1080/03091927009365780.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527.

  • Deardorff, J. W., G. E. Willis, and B. H. Stockton, 1980: Laboratory studies of the entrainment zone of a convectively mixed layer. J. Fluid Mech., 100, 4164.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., 1991: Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech., 23, 455493.

  • Gentine, P., D. Entekhabi, and J. Polcher, 2010: Spectral behaviour of a coupled land-surface and boundary-layer system. Bound.-Layer Meteor., 134, 157180, doi:10.1007/s10546-009-9433-z.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., D. Entekhabi, and J. Polcher, 2011a: The diurnal behavior of evaporative fraction in the soil–vegetation–atmospheric boundary layer continuum. J. Hydrometeor., 12, 15301546.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., J. Polcher, and D. Entekhabi, 2011b: Harmonic propagation of variability in surface energy balance within a coupled soil-vegetation-atmosphere system. Water Resour. Res., 47, W05525, doi:10.1029/2010WR009268.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. K. Betts, B. R. Lintner, K. L. Findell, C. C. van Heerwaarden, and F. D. Andrea, 2013: A probabilistic bulk model of coupled mixed layer and convection. Part II: Shallow convection case. J. Atmos. Sci., 70, 15571576.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., 2001: A large-eddy simulation study of cumulus clouds over land and sensitivity to soil moisture. Atmos. Res., 59–60, 373392.

    • Search Google Scholar
    • Export Citation
  • Heerwaarden, C. C. V., J. Vilà-Guereau de Arellano, A. F . Moene, and A. A. M. Holtslag, 2009: Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development. Quart. J. Roy. Meteor. Soc., 135, 1277–1291, doi:10.1002/qj.431.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 10031018.

  • Huang, H.-Y., and S. A. Margulis, 2011: Investigating the impact of soil moisture and atmospheric stability on cloud development and distribution using a coupled large-eddy simulation and land surface model. J. Hydrometeor., 12, 787804.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-Y., and S. A. Margulis, 2013: Impact of soil moisture heterogeneity length scale and gradients on daytime coupled land-cloudy boundary layer interactions. Hydrol. Processes, 27, 19882003, doi:10.1002/hyp.9351.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and G. Feingold, 2006: Effect of aerosol on warm convective clouds: Aerosol-cloud-surface flux feedbacks in a new coupled large eddy model. J. Geophys. Res., 111, 112, doi:10.1029/2005JD006138.

    • Search Google Scholar
    • Export Citation
  • Jonker, H. J. J., M. van Reeuwijk, P. P. Sullivan, and E. G. Patton, 2012: Interfacial layers in atmospheric clear and cloudy boundary layers. Proc. Seventh Int. Symp. on Turbulence, Heat and Mass Transfer, Palermo, Italy, International Centre for Heat and Mass Transfer, 1–12.

  • Joseph, J. H., W. J. Wiscombe, and J. A. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 24522459.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., and C. S. Daughtry, 1990: Estimation of the soil heat flux/net radiation ratio from spectral data. Agric. For. Meteor., 49, 205223, doi:10.1016/0168-1923(90)90033-3.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and W. T. Pennell, 1976: The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Mon. Wea. Rev., 104, 524539.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., and W. S. Lewellen, 1996: Influence of Bowen ratio on boundary-layer cloud structure. J. Atmos. Sci., 53, 175187.

  • Lewellen, D. C., and W. S. Lewellen, 2002: Entrainment and decoupling relations for cloudy boundary layers. J. Atmos. Sci., 59, 29662986.

    • Search Google Scholar
    • Export Citation
  • Lohou, F., B. Campistron, A. Druilhet, P. Foster, and J. P. Pages, 1998: Turbulence and coherent organizations in the atmospheric boundary layer: A radar-aircraft experimental approach. Bound.-Layer Meteor., 86, 147179.

    • Search Google Scholar
    • Export Citation
  • Lohou, F., F. Saïd, M. Lothon, P. Durand, and D. Serça, 2010: Impact of boundary-layer processes on near-surface turbulence within the West African monsoon. Bound.-Layer Meteor., 136, 123, doi:10.1007/s10546-010-9493-0.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1998: Stratocumulus-topped atmospheric planetary boundary layer. Buoyant Convection in Geophysical Flows, E. J. Plate et al., Eds., Kluwer Academic, 421–440.

  • Moeng, C.-H., 2000: Entrainment rate, cloud fraction, and liquid water path of PBL stratocumulus clouds. J. Atmos. Sci., 57, 36273643.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1981: Evaporation and surface temperature. Quart. J. Roy. Meteor. Soc., 107, 127, doi:10.1002/qj.49710745102.

  • Nicholls, S., and M. A. LeMone, 1980: The fair weather boundary layer in GATE: The relationship of subcloud fluxes and structure to the distribution and enhancement of cumulus clouds. J. Atmos. Sci., 37, 20512067.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., M. A. LeMone, and G. Sommeria, 1982: The simulation of a fair weather marine boundary layer in GATE using a three-dimensional model. Quart. J. Roy. Meteor. Soc., 108, 167190.

    • Search Google Scholar
    • Export Citation
  • Otles, Z., and J. A. Young, 1996: Influence of shallow cumuli on subcloud turbulent fluxes analyzed from aircraft data. J. Atmos. Sci., 53, 665676.

    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, and C.-H. Moeng, 2005: The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci., 62, 20782097.

    • Search Google Scholar
    • Export Citation
  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, 193A, 120145.

  • Pino, D., J. Vilà-Guereau de Arellano, and P. J. Duynkerke, 2003: The contribution of shear to the evolution of a convective boundary layer. J. Atmos. Sci., 60, 19131926.

    • Search Google Scholar
    • Export Citation
  • Raasch, S., and G. Harbusch, 2001: An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using large-eddy simulation. Bound.-Layer Meteor., 101, 3159, doi:10.1023/A:1019297504109.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and M. A. Friedl, 2003: Diurnal covariation in soil heat flux and net radiation. J. Appl. Meteor., 42, 851862.

  • Schumann, U., A. Dörnbrack, and B. Mayer, 2002: Cloud-shadow effects on the structure of the convective boundary layer. Meteor. Z., 11, 285294, doi:10.1127/0941-2948/2002/0011-0285.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., 1998: Shallow cumulus convection. Buoyant Convection in Geophysical Flows, E. J. Plate et al., Eds., Kluwer Academic, 441–486.

  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219.

    • Search Google Scholar
    • Export Citation
  • Small, E. E., and S. A. Kurc, 2003: Tight coupling between soil moisture and the surface radiation budget in semiarid environments: Implications for land-atmosphere interactions. Water Resour. Res., 39, 1278, doi:10.1029/2002WR001297.

    • Search Google Scholar
    • Export Citation
  • Soares, P. M. M., P. M. A. Miranda, P. A. Siebesma, and J. Teixeira, 2004: An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection. Quart. J. Roy. Meteor. Soc., 8, 33653383, doi:10.1256/qj.03.223.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and B. Stevens, 2010: Multiscale models for cumulus cloud dynamics. J. Atmos. Sci., 67, 32693285.

  • Stephens, G. L., 1984: Review: The parameterization of radius for numerical weather prediction and climate models. Mon. Wea. Rev., 112, 826867.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605643, doi:10.1146/annurev.earth.33.092203.122658.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2007: On the growth of layers of nonprecipitating cumulus convection. J. Atmos. Sci., 64, 29162931.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sullivan, P. P., and E. G. Patton, 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., C.-H. Moeng, B. Stevens, D. H. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 30423064.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. A. M. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, doi:10.1038/nature11377.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., W. Heckley, and J. Slingo, 1988: Tropical forecasting at ECMWF: The influence of physical parametrization on the mean structure of forecasts and analyses. Quart. J. Roy. Meteor. Soc., 114, 639664.

    • Search Google Scholar
    • Export Citation
  • Urankar, G., T. V. Prabha, G. Pandithurai, P. Pallavi, D. Achuthavarier, and B. N. Goswami, 2012: Aerosol and cloud feedbacks on surface energy balance over selected regions of the Indian subcontinent. J. Geophys. Res.,117, D04210, doi:10.1029/2011JD016363.

  • van Heerwaarden, C. C., J. Vilà-Guerau de Arellano, A. Gounou, F. Guichard, and F. Couvreux, 2010: Understanding the daily cycle of evapotranspiration: A method to quantify the influence of forcings and feedbacks. J. Hydrometeor., 11, 14051422.

    • Search Google Scholar
    • Export Citation
  • Wang, K., R. E. Dickinson, and S. Liang, 2008: Observational evidence on the effects of clouds and aerosols on net ecosystem exchange and evapotranspiration. Geophys. Res. Lett.,35, L10401, doi:10.1029/2008GL034167.

  • Zhao, M., and P. H. Austin, 2005a: Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport. J. Atmos. Sci., 62, 12691290.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005b: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62, 12911310.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., and B. Albrecht, 2003: Large eddy simulations of continental shallow cumulus convection. J. Geophys. Res., 108, 4453, doi:10.1029/2002JD003119.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 273 133 11
PDF Downloads 235 101 6

Surface Energy Balance and Buoyancy Response to Shallow Cumulus Shading

Fabienne LohouLaboratoire d’Aérologie, Université de Toulouse, Toulouse, France

Search for other papers by Fabienne Lohou in
Current site
Google Scholar
PubMed
Close
and
Edward G. PattonNational Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Edward G. Patton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The interactions surrounding the coupling between surface energy balance and a boundary layer with shallow cumuli are investigated using the National Center for Atmospheric Research’s large-eddy simulation code coupled to the Noah land surface model. The simulated cloudy boundary layer is based on the already well-documented and previously simulated 21 June 1997 case at the Atmospheric Radiation Measurement Southern Great Plains central facility. The surface energy balance response to cloud shading is highly nonlinear, leading to different partitioning between sensible and latent heat flux compared to the surface not impacted by cloud. The evaporative fraction increases by about 2%–3% in the presence of shallow cumuli at the regional scale but can increase by up to 30% at any individual location. As expected, the cloud’s reduction of solar irradiance largely controls the surface’s response. However, the turbulence and secondary circulations associated with the cloud dynamics increases the surface flux variability. Even though they are less than 1 km in horizontal scale, the cloud-induced surface heterogeneities impact the vertical flux of heat and moisture up to approximately 20% of the height of the subcloud layer zsl, higher than the surface layer’s typical extent. Above 0.2zsl, the cloud root tends to amplify the drying and the cooling of the subcloud layer. Near the entrainment zone, the cloud-induced latent heat flux increase and sensible heat flux decrease compensate each other with respect to total buoyancy and therefore do not significantly modify the subcloud-layer entrainment rate over large time scales.

Corresponding author address: Fabienne Lohou, Laboratoire d’Aérologie, Université de Toulouse, 8 route de Lannemezan, 65300 Campistrous, France. E-mail: fabienne.lohou@aero.obs-mip.fr

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Abstract

The interactions surrounding the coupling between surface energy balance and a boundary layer with shallow cumuli are investigated using the National Center for Atmospheric Research’s large-eddy simulation code coupled to the Noah land surface model. The simulated cloudy boundary layer is based on the already well-documented and previously simulated 21 June 1997 case at the Atmospheric Radiation Measurement Southern Great Plains central facility. The surface energy balance response to cloud shading is highly nonlinear, leading to different partitioning between sensible and latent heat flux compared to the surface not impacted by cloud. The evaporative fraction increases by about 2%–3% in the presence of shallow cumuli at the regional scale but can increase by up to 30% at any individual location. As expected, the cloud’s reduction of solar irradiance largely controls the surface’s response. However, the turbulence and secondary circulations associated with the cloud dynamics increases the surface flux variability. Even though they are less than 1 km in horizontal scale, the cloud-induced surface heterogeneities impact the vertical flux of heat and moisture up to approximately 20% of the height of the subcloud layer zsl, higher than the surface layer’s typical extent. Above 0.2zsl, the cloud root tends to amplify the drying and the cooling of the subcloud layer. Near the entrainment zone, the cloud-induced latent heat flux increase and sensible heat flux decrease compensate each other with respect to total buoyancy and therefore do not significantly modify the subcloud-layer entrainment rate over large time scales.

Corresponding author address: Fabienne Lohou, Laboratoire d’Aérologie, Université de Toulouse, 8 route de Lannemezan, 65300 Campistrous, France. E-mail: fabienne.lohou@aero.obs-mip.fr

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Save