• Arnold, N. P., E. Tziperman, and B. Farrell, 2012: Abrupt transition to strong superrotation driven by equatorial wave resonance in an idealized GCM. J. Atmos. Sci., 69, 626640.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., and M. Huber, 2010: Spontaneous transition to superrotation in warm climates simulated in CAM3. Geophys. Res. Lett., 37, L11701, doi:10.1029/2010GL043468.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., and R. S. Lindzen, 1974: The interaction of thermally excited gravity waves with mean flows. Geophys. Fluid Dyn., 6, 149191.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1982: Space-time spectral analysis and its application to atmospheric waves. J. Meteor. Soc. Japan, 60, 156171.

  • Held, I. M., and A. H. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. C. Wheeler, 2008: Some space–time spectral analyses of tropical convection and planetary-scale waves. J. Atmos. Sci., 65, 29362948.

    • Search Google Scholar
    • Export Citation
  • Heng, K., K. Menou, and P. J. Phillipps, 2011: Atmospheric circulation of tidally locked exoplanets: A suite of benchmark tests for dynamical solvers. Mon. Not. Roy. Astron. Soc., 413, 23802402.

    • Search Google Scholar
    • Export Citation
  • Hide, R., 1969: Dynamics of the atmospheres of the major planets with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci., 26, 841853.

    • Search Google Scholar
    • Export Citation
  • Iga, S.-I., and Y. Matsuda, 2005: Shear instability in a shallow water model with implications for the Venus atmosphere. J. Atmos. Sci., 62, 25142527.

    • Search Google Scholar
    • Export Citation
  • Imamura, T., 2006: The meridional propagation of planetary-scale waves in vertical shear: Implication for the Venus atmosphere. J. Atmos. Sci., 63, 16231636.

    • Search Google Scholar
    • Export Citation
  • Imamura, T., T. Horinouchi, and T. J. Dunkerton, 2004: The lateral transport of zonal momentum due to Kelvin waves in a meridional circulation. J. Atmos. Sci., 61, 19661975.

    • Search Google Scholar
    • Export Citation
  • Joshi, M., R. Haberle, and R. Reynolds, 1997: Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: Conditions for atmospheric collapse and the implications for habitability. Icarus, 129, 450465.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1980: Effect of zonal flows on the free oscillations of a barotropic atmosphere. J. Atmos. Sci., 37, 917929.

  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kraucunas, I., and D. L. Hartmann, 2005: Equatorial superrotation and the factors controlling the zonal-mean zonal winds in the tropical upper troposphere. J. Atmos. Sci., 62, 371389.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 1999: Why are the climatological zonal winds easterly in the equatorial upper troposphere? J. Atmos. Sci., 56, 13531363.

  • Lian, Y., and A. P. Showman, 2010: Generation of equatorial jets by large-scale latent heating on the giant planets. Icarus, 207, 373393.

    • Search Google Scholar
    • Export Citation
  • Liu, J., and T. Schneider, 2011: Convective generation of equatorial superrotation in planetary atmospheres. J. Atmos. Sci., 68, 27422756.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Merlis, T. M., and T. Schneider, 2010: Atmospheric dynamics of Earth-like tidally locked aquaplanets. J. Adv. Model. Earth Syst., 2 (13), doi:10.3894/JAMES.2010.2.13.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. L., and G. K. Vallis, 2010: The transition to superrotation in terrestrial atmospheres. J. Geophys. Res., 115, E12008, doi:10.1029/2010JE003587.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697.

    • Search Google Scholar
    • Export Citation
  • Rauscher, E., and K. Menou, 2012: A general circulation model for gaseous exoplanets with double-gray radiative transfer. Astrophys. J., 750 (96), doi:10.1088/0004-637X/750/2/96.

    • Search Google Scholar
    • Export Citation
  • Robinson, G. J., cited 2013: Cloud Archive User Service (CLAUS). NCAS British Atmospheric Data Centre. [Available online at http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_claus.]

  • Saravanan, R., 1993: Equatorial superrotation and maintenance of the general circulation in two-level models. J. Atmos. Sci., 50, 12111227.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688.

  • Showman, A. P., and L. M. Polvani, 2010: The Matsuno-Gill model and equatorial superrotation. Geophys. Res. Lett., 37, L18811, doi:10.1029/2010GL044343.

    • Search Google Scholar
    • Export Citation
  • Showman, A. P., and L. M. Polvani, 2011: Equatorial superrotation on tidally locked exoplanets. Astrophys. J., 738 (71), doi:10.1088/0004-637X/738/1/71.

    • Search Google Scholar
    • Export Citation
  • Showman, A. P., J. J. Fortney, Y. Lian, M. S. Marley, R. S. Freedman, H. A. Knutson, and D. Charbonneau, 2009: Atmospheric circulation of hot Jupiters: Coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b. Astrophys. J., 699 (564), doi:10.1088/0004-637X/699/1/564.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: Extratropical forcing of convectively coupled Kelvin waves during austral winter. J. Atmos. Sci., 60, 526543.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and D. G. Duffy, 1992: Terrestrial superrotation: A bifurcation of the general circulation. J. Atmos. Sci., 49, 15411554.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics.Cambridge University Press, 745 pp.

  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Williams, G., 2003: Barotropic instability and equatorial superrotation. J. Atmos. Sci., 60, 21362152.

  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhu, X., 2006: Maintenance of equatorial superrotation in the atmospheres of Venus and Titan. Planet. Space Sci., 54, 761773.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 234 93 14
PDF Downloads 182 59 7

Spontaneous Superrotation and the Role of Kelvin Waves in an Idealized Dry GCM

Samuel F. PotterAtmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Samuel F. Potter in
Current site
Google Scholar
PubMed
Close
,
Geoffrey K. VallisAtmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Geoffrey K. Vallis in
Current site
Google Scholar
PubMed
Close
, and
Jonathan L. MitchellEarth and Space Sciences, Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Jonathan L. Mitchell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The nondimensional parameter space of an idealized dry primitive equation model is explored to find superrotating climate states. The model has no convective parameterization and is forced using a simple thermal relaxation to a prescribed radiative equilibrium temperature. It is demonstrated that, of four nondimensional parameters that determine the model’s state, only the thermal Rossby number has a significant effect on superrotation. The mode that drives the transition to superrotation in an intermediate-thermal-Rossby-number atmosphere is shown to behave like a Kelvin wave in the tropics.

Corresponding author address: Sam Potter, Atmospheric and Oceanic Sciences Program, Princeton University, 300 Forrestal Road, Princeton, NJ 08540-6654. E-mail: spotter@princeton.edu

Current affiliation: Department of Mathematics, University of Exeter, Exeter, United Kingdom.

Abstract

The nondimensional parameter space of an idealized dry primitive equation model is explored to find superrotating climate states. The model has no convective parameterization and is forced using a simple thermal relaxation to a prescribed radiative equilibrium temperature. It is demonstrated that, of four nondimensional parameters that determine the model’s state, only the thermal Rossby number has a significant effect on superrotation. The mode that drives the transition to superrotation in an intermediate-thermal-Rossby-number atmosphere is shown to behave like a Kelvin wave in the tropics.

Corresponding author address: Sam Potter, Atmospheric and Oceanic Sciences Program, Princeton University, 300 Forrestal Road, Princeton, NJ 08540-6654. E-mail: spotter@princeton.edu

Current affiliation: Department of Mathematics, University of Exeter, Exeter, United Kingdom.

Save