• Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res., 105, 68376844.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1935: On the physics of clouds and precipitation. Proces Verbaux de l‘Association de Meteorologie, International Union of Geodesy and Geophysics, 156–178.

  • Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148167.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34, L03813, doi:10.1029/2006GL027648.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., and C. S. Bretherton, 2009: Large-eddy simulation of the diurnal cycle in southeast Pacific stratocumulus. J. Atmos. Sci., 66, 432449.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 226 pp. [Available online at http://www.cesm.ucar.edu/models/atm-cam/docs/description/description.pdf.]

  • Curry, J., 1983: On the formation of continental polar air. J. Atmos. Sci., 40, 22782292.

  • Curry, J., and E. E. Ebert, 1992: Annual cycle of radiation fluxes over the Arctic Ocean: Sensitivity to cloud optical properties. J. Climate, 5, 12671280.

    • Search Google Scholar
    • Export Citation
  • Curry, J., W. B. Rossow, D. Randall, and J. L. Schramm, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9, 17311764.

    • Search Google Scholar
    • Export Citation
  • Curry, J., and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81, 530.

  • de Boer, G., H. Morrison, M. D. Shupe, and R. Hildner, 2011: Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors. Geophys. Res. Lett., 38, L01803, doi:10.1029/2010GL046016.

    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., and Q. Wang, 2007: Do stratocumulus clouds detrain? FIRE I data revisited. Bound.-Layer Meteor., 122, 479491.

  • Dong, X., B. Xi, K. Crosby, C. N. Long, R. S. Stone, and M. D. Shupe, 2010: A 10 year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska. J. Geophys. Res., 115, D17212, doi:10.1029/2009JD013489.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., and B. B. Hicks, 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715721.

  • Findeisen, W., 1938: Kolloid-meteorologische Vorgange bei Neiderschlagsbildung. Meteor. Z., 55, 121133.

  • Fridlind, A. M., A. S. Ackerman, G. McFarquhar, G. Zhang, M. R. Poellot, P. J. DeMott, A. J. Prenni, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results. J. Geophys. Res., 112, D24202, doi:10.1029/2007JD008646.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on earth’s energy balance—Global analysis. J. Climate, 5, 12811304.

    • Search Google Scholar
    • Export Citation
  • Herman, G., and R. Goody, 1976: Formation and persistence of summertime Arctic stratus clouds. J. Atmos. Sci., 33, 15371553.

  • Hogan, R., P. Francis, H. Flentje, A. Illingworth, M. Quante, and J. Pelon, 2003: Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE’98. Quart. J. Roy. Meteor. Soc., 129, 20892116.

    • Search Google Scholar
    • Export Citation
  • Inoue, J., J. Liu, J. O. Pinto, and J. A. Curry, 2006: Intercomparison of Arctic regional climate models: Modeling clouds and radiation for SHEBA in May 1998. J. Climate, 19, 41674178.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., C. W. Fairall, M. D. Shupe, P. O. G. Persson, E. Andreas, P. S. Guest, and R. E. Moritz, 2002: An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res., 107, 8039, doi:10.1029/2000JC000439.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. Isaac, 2003: Phase transformation of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 1938, doi:10.1256/qj.01.203.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974.

  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309.

  • McFarquhar, G. M., and Coauthors, 2011: Indirect and Semi-Direct Aerosol Campaign (ISDAC): The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. O. Pinto, 2005: Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62, 36833704.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Coauthors, 2011: Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE. J. Adv. Model. Earth Syst, 3, M05001, doi:10.1029/2011MS000066.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117.

    • Search Google Scholar
    • Export Citation
  • Ovchinnikov, M., A. Korolev, and J. Fan, 2011: Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud. J. Geophys. Res., 116, D00T06, doi:10.1029/2011JD015888.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., and J. R. Key, 1994: Arctic Ocean radiative fluxes and cloud forcing estimates from the ISCCP C2 cloud dataset. J. Appl. Meteor., 33, 948963.

    • Search Google Scholar
    • Export Citation
  • Sedlar, J., M. D. Shupe, and M. Tjernström, 2012: On the relationship between thermodynamic structure, cloud top, and climate significance in the Arctic. J. Climate, 25, 23742393.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., 2007: A ground-based multiple remote-sensor cloud phase classifier. Geophys. Res. Lett., 34, L2209, doi:10.1029/2007GL031008.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., S. Y. Matrosov, and T. Uttal, 2006: Arctic mixed phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., P. O. G. Persson, I. M. Brooks, M. Tjernström, J. Sedlar, T. Mauritsen, S. Sjogren, and C. Leck, 2013: Cloud and boundary layer interactions over the Arctic sea-ice in late summer. Atmos. Chem. Phys. Discuss.,13, 13 19113 244.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Solomon, A., M. D. Shupe, P. O. G. Persson, and H. Morrison, 2011: Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmos. Chem. Phys., 11, 10 12710 148.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. J. Greenwald, 1991: Observations of the Earth’s radiation budget in relation to atmospheric hydrology. Part II: Cloud effects and cloud feedback. J. Geophys. Res., 96, 15 32515 340.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2002: Entrainment in stratocumulus topped mixed layers. Quart. J. Roy. Meteor. Soc., 128, 26632690.

  • Sun, Z., and K. Shine, 1994: Studies of the radiative properties of ice and mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 120, 111137.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and R. G. Graversen, 2009: The vertical structure of the lower Arctic troposphere analysed from observations and ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 135, 431443.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., C. Leck, P. O. G. Persson, M. L. Jensen, S. P. Oncley, and A. Targino, 2004: The summertime Arctic atmosphere: Meteorological measurements during the Arctic Ocean Experiment 2001. Bull. Amer. Meteor. Soc., 85, 13051321.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. Cady-Pereira, and K. L. Gaustad, 2007: Retrieving precipitable water vapor and liquid water path from Atmospheric Radiation Measurement (ARM) program’s microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690.

    • Search Google Scholar
    • Export Citation
  • Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255275.

  • Verlinde, H., and Coauthors, 2007: The Mixed-Phase Arctic Cloud Experiment. Bull. Amer. Meteor. Soc., 88, 205221.

  • Walsh, J. E., and W. L. Chapman, 1998: Arctic cloud-radiation temperature associations in observational data and atmospheric reanalyses. J. Climate, 11, 30303045.

    • Search Google Scholar
    • Export Citation
  • Wang, H., W. C. Skamarock, and G. Feingold, 2009: Evaluation of scalar advection schemes in the Advanced Research WRF model using large-eddy simulations of aerosol–cloud interactions. Mon. Wea. Rev., 137, 25472558.

    • Search Google Scholar
    • Export Citation
  • Wegener, A., 1911: Thermodynamik der Atmosphare. J. A. Barth, 311 pp.

  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423.

  • Wood, R., and C. S. Bretherton, 2004: Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Climate, 17, 35763588.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and G. Feingold, 2012: Technical note: Large-eddy simulation of cloudy boundary layer with the Advanced Research WRF model. J. Adv. Model. Earth Syst., 4, M09003, doi:10.1029/2012MS000164.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., K. Stamnes, and S. A. Bowling, 1996: Impact of clouds on surface radiative fluxes and snowmelt in the Arctic and subarctic. J. Climate, 9, 21102123.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2005: An Arctic springtime mixed phase cloudy boundary layer observed during SHEBA. J. Atmos. Sci., 62, 160176.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 443 156 12
PDF Downloads 357 122 6

The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface-Layer and Cloud-Top Inversion-Layer Moisture Sources

Amy SolomonNOAA/Earth System Research Laboratory, and CIRES, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Amy Solomon in
Current site
Google Scholar
PubMed
Close
,
Matthew D. ShupeNOAA/Earth System Research Laboratory, and CIRES, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Matthew D. Shupe in
Current site
Google Scholar
PubMed
Close
,
Ola PerssonNOAA/Earth System Research Laboratory, and CIRES, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Ola Persson in
Current site
Google Scholar
PubMed
Close
,
Hugh MorrisonNational Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
,
Takanobu YamaguchiNOAA/Earth System Research Laboratory, and CIRES, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Takanobu Yamaguchi in
Current site
Google Scholar
PubMed
Close
,
Peter M. CaldwellLawrence Livermore National Lab, Livermore, California

Search for other papers by Peter M. Caldwell in
Current site
Google Scholar
PubMed
Close
, and
Gijs de BoerNOAA/Earth System Research Laboratory, and CIRES, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Gijs de Boer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, a series of idealized large-eddy simulations is used to understand the relative impact of cloud-top and subcloud-layer sources of moisture on the microphysical–radiative–dynamical feedbacks in an Arctic mixed-phase stratocumulus (AMPS) cloud system. This study focuses on a case derived from observations of a persistent single-layer AMPS cloud deck on 8 April 2008 during the Indirect and Semi-Direct Aerosol Campaign near Barrow, Alaska. Moisture and moist static energy budgets are used to examine the potential impact of ice in mixed-phase clouds, specific humidity inversions coincident with temperature inversions as a source of moisture for the cloud system, and the presence of cloud liquid water above the mixed-layer top. This study demonstrates that AMPS have remarkable insensitivity to changes in moisture source. When the overlying air is dried initially, radiative cooling and turbulent entrainment increase moisture import from the surface layer. When the surface layer is dried initially, the system evolves to a state with reduced mixed-layer water vapor and increased surface-layer moisture, reducing the loss of water through precipitation and entrainment of near-surface air. Only when moisture is reduced both above and below the mixed layer does the AMPS decay without reaching a quasi-equilibrium state. A fundamental finding of this study is that, with or without cloud ice and with or without a specific humidity inversion, the cloud layer eventually extends into the temperature inversion producing a precipitation flux as a source of water into the mixed layer.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Amy Solomon, 325 Broadway, R/PSD3, Boulder, CO 80305-3328. E-mail: amy.solomon@noaa.gov

Abstract

In this study, a series of idealized large-eddy simulations is used to understand the relative impact of cloud-top and subcloud-layer sources of moisture on the microphysical–radiative–dynamical feedbacks in an Arctic mixed-phase stratocumulus (AMPS) cloud system. This study focuses on a case derived from observations of a persistent single-layer AMPS cloud deck on 8 April 2008 during the Indirect and Semi-Direct Aerosol Campaign near Barrow, Alaska. Moisture and moist static energy budgets are used to examine the potential impact of ice in mixed-phase clouds, specific humidity inversions coincident with temperature inversions as a source of moisture for the cloud system, and the presence of cloud liquid water above the mixed-layer top. This study demonstrates that AMPS have remarkable insensitivity to changes in moisture source. When the overlying air is dried initially, radiative cooling and turbulent entrainment increase moisture import from the surface layer. When the surface layer is dried initially, the system evolves to a state with reduced mixed-layer water vapor and increased surface-layer moisture, reducing the loss of water through precipitation and entrainment of near-surface air. Only when moisture is reduced both above and below the mixed layer does the AMPS decay without reaching a quasi-equilibrium state. A fundamental finding of this study is that, with or without cloud ice and with or without a specific humidity inversion, the cloud layer eventually extends into the temperature inversion producing a precipitation flux as a source of water into the mixed layer.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Amy Solomon, 325 Broadway, R/PSD3, Boulder, CO 80305-3328. E-mail: amy.solomon@noaa.gov
Save