• Adler, B., N. Kalthoff, and L. Gantner, 2011: The impact of soil moisture inhomogeneities on the modification of a mesoscale convective system: An idealised model study. Atmos. Res., 101, 354372.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., and Y. Liu, 1996: Three-dimensional numerical study of shallow convective clouds and precipitation induced by land surface forcing. J. Geophys. Res., 101, 74997518.

    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., and R. Avissar, 2002: Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res., 107, 8037, doi:10.1029/2000JD000266.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905.

    • Search Google Scholar
    • Export Citation
  • Barthlott, C., and N. Kalthoff, 2011: A numerical sensitivity study on the impact of soil moisture on convection-related parameters and convective precipitation over complex terrain. J. Atmos. Sci., 68, 29712987.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85, 16731688.

  • Betts, A. K., 2009: Land surface–atmosphere coupling in observations and models. J. Adv. Model. Earth Syst, 1, doi:10.3894/JAMES.2009.1.4.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and P. Viterbo, 2005: Land-surface, boundary layer, and cloud-field coupling over the southwestern Amazon in ERA-40. J. Geophys. Res., 110, D14108, doi:10.1029/2004JD005702.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., R. Desjardins, and D. Worth, 2013: Cloud radiative forcing of the diurnal cycle climate of the Canadian prairies. J. Geophys. Res. Atmos., 118, 89358953, doi:10.1002/jgrd.50593.

    • Search Google Scholar
    • Export Citation
  • Catalano, F., and C.-H. Moeng, 2010: Large-eddy simulation of the daytime boundary layer in an idealized valley using the Weather Research and Forecasting numerical model. Bound.-Layer Meteor., 137, 4975.

    • Search Google Scholar
    • Export Citation
  • Chagnon, F., R. Bras, and J. Wang, 2004: Climatic shift in patterns of shallow clouds over the Amazon. Geophys. Res. Lett., 31, L24212, doi:10.1029/2004GL021188.

    • Search Google Scholar
    • Export Citation
  • Clark, D., C. Taylor, and A. Thorpe, 2004: Feedback between the land surface and rainfall at convective length scales. J. Hydrometeor., 5, 625639.

    • Search Google Scholar
    • Export Citation
  • Davies, H., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc., 102, 405418.

  • Desborough, C., A. Pitman, and P. Iranneiad, 1996: Analysis of the relationship between bare soil evaporation and soil moisture simulated by 13 land surface schemes for a simple non-vegetated site. Global Planet. Change, 13, 4756.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1984: Modeling Evapotranspiration for Three-Dimensional Global Climate Models. Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 58–72.

  • Doms, G., and J. Förstner, 2004: Development of a kilometer-scale NWP-system: LMK. COSMO Newsletter, No. 4, Consortium for Small-Scale Modeling, 159–167. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter04/chp9-5.pdf.]

  • Emori, S., 1998: The interaction of cumulus convection with soil moisture distribution: An idealized simulation. J. Geophys. Res., 103, 88738884.

    • Search Google Scholar
    • Export Citation
  • Findell, K., and E. Eltahir, 1997: An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33, 725735.

    • Search Google Scholar
    • Export Citation
  • Findell, K., and E. Eltahir, 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor.,4, 570–583.

  • Findell, K., and E. Eltahir, 2003b: Atmospheric controls on soil moisture-boundary layer interactions: Three-dimensional wind effects. J. Geophys. Res., 108, 8385, doi:10.1029/2001JD001515.

    • Search Google Scholar
    • Export Citation
  • Findell, K., P. Gentine, B. R. Lintner, and C. Kerr, 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439.

    • Search Google Scholar
    • Export Citation
  • Gantner, L., and N. Kalthoff, 2010: Sensitivity of a modelled life cycle of a mesoscale convective system to soil conditions over West Africa. Quart. J. Roy. Meteor. Soc., 136, 471482.

    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., D. Parker, and J. Marsham, 2011: What is the mechanism for the modification of convective cloud distributions by land surface–induced flows? J. Atmos. Sci., 68, 619634.

    • Search Google Scholar
    • Export Citation
  • Goutorbe, J., and Coauthors, 1994: HAPEX-Sahel: A large-scale study of land–atmosphere interactions in the semi-arid tropics. Ann. Geophys., 12, 5364.

    • Search Google Scholar
    • Export Citation
  • Heise, E., M. Lange, B. Ritter, and R. Schrodin, 2003: Improvement and validation of the multi-layer soil model. COSMO Newsletter, No. 3, Consortium for Small-Scale Modeling, 198–203. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter03/cnl3-chp9-12.pdf.]

    • Search Google Scholar
    • Export Citation
  • Jarvis, P., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, 273, 593–610.

    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., and Coauthors, 2011: The dependence of convection-related parameters on surface and boundary-layer conditions over complex terrain. Quart. J. Roy. Meteor. Soc., 137, 7080.

    • Search Google Scholar
    • Export Citation
  • Kang, S., and G. Bryan, 2011: A large eddy simulation study of moist convection initiation over heterogeneous surface fluxes. Mon. Wea. Rev., 139, 29012917.

    • Search Google Scholar
    • Export Citation
  • Klemp, J., and R. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096.

  • Koster, R., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140.

  • Langhans, W., and J. Schmidli, 2012: A Smagorinsky-Lilly turbulence closure for COSMO-LES: Implementation and comparison to ARPS. COSMO Newsletter, No. 12, Consortium for Small-Scale Modeling, 20–31. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter12/newsLetter_12.pdf.]

  • Langhans, W., J. Schmidli, and C. Schär, 2012: Bulk convergence of cloud-resolving simulations of moist convection over complex terrain. J. Atmos. Sci., 69, 22072228.

    • Search Google Scholar
    • Export Citation
  • Louis, J., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Mellor, G., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806.

    • Search Google Scholar
    • Export Citation
  • Ookouchi, Y., M. Segal, R. Kessler, and R. Pielke, 1984: Evaluation of soil moisture effects on the generation and modification of mesoscale circulations. Mon. Wea. Rev., 112, 22812292.

    • Search Google Scholar
    • Export Citation
  • Pielke, R., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151177.

    • Search Google Scholar
    • Export Citation
  • Raschendorfer, M., 2001: The new turbulence parameterization of LM. COSMO Newsletter, No. 1, Consortium for Small-Scale Modeling, 90–98. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter01/newsLetter_01.pdf.]

  • Reinhardt, T., and A. Seifert, 2006: A three-category ice scheme for LMK. COSMO Newsletter, No. 6, Consortium for Small-Scale Modeling, 115–120. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter06/cnl6_reinhardt.pdf.]

  • Ritter, B., and J. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325.

    • Search Google Scholar
    • Export Citation
  • Rockel, B., A. Will, and A. Hense, 2008: The regional climate model COSMO-CLM (CCLM). Meteor. Z., 17, 347348.

  • Salvucci, G., J. Saleem, and R. Kaufmann, 2002: Investigating soil moisture feedbacks on precipitation with tests of Granger causality. Adv. Water Resour., 25, 13051312.

    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741.

    • Search Google Scholar
    • Export Citation
  • Schär, C., P. Vidale, D. Lüthi, C. Frei, C. Häberli, M. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., C. Hohenegger, J. Schmidli, C. Bretherton, and C. Schär, 2011: An idealized cloud-resolving framework for the study of midlatitude diurnal convection over land. J. Atmos. Sci., 68, 10411057.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., C. Hohenegger, J. Schmidli, and C. Schär, 2012: Diurnal equilibrium convection and land surface-atmosphere interactions in an idealized cloud-resolving model. Quart. J. Roy. Meteor. Soc., 138, 15261539.

    • Search Google Scholar
    • Export Citation
  • Schwendike, J., N. Kalthoff, and M. Kohler, 2010: The impact of mesoscale convective systems on the surface and boundary-layer structure in West Africa: Case-studies from the AMMA campaign 2006. Quart. J. Roy. Meteor. Soc., 136, 566582.

    • Search Google Scholar
    • Export Citation
  • Segal, M., and R. Arritt, 1992: Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc., 73, 15931604.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., G. Doms, U. Schättler, H. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 7596.

    • Search Google Scholar
    • Export Citation
  • Taylor, C., and T. Lebel, 1998: Observational evidence of persistent convective-scale rainfall patterns. Mon. Wea. Rev., 126, 15971607.

    • Search Google Scholar
    • Export Citation
  • Taylor, C., and R. Ellis, 2006: Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys. Res. Lett.,33, L03404, doi:10.1029/2005GL025252.

  • Taylor, C., D. Parker, and P. Harris, 2007: An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett.,34, L15801, doi:10.1029/2007GL030572.

  • Taylor, C., P. Harris, and D. Parker, 2010: Impact of soil moisture on the development of a Sahelian mesoscale convective system: A case-study from the AMMA Special Observing Period. Quart. J. Roy. Meteor. Soc., 136, 456470.

    • Search Google Scholar
    • Export Citation
  • Taylor, C., and Coauthors, 2011a: New perspectives on land-atmosphere feedbacks from the African Monsoon Multidisciplinary Analysis. Atmos. Sci. Lett., 12, 3844.

    • Search Google Scholar
    • Export Citation
  • Taylor, C., A. Gounou, F. Guichard, P. Harris, R. Ellis, F. Couvreux, and M. De Kauwe, 2011b: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430433.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., and R. Avissar, 2001: Atmospheric disturbances caused by human modification of the landscape. Bull. Amer. Meteor. Soc., 82, 269281.

    • Search Google Scholar
    • Export Citation
  • Wicker, L., and W. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097.

    • Search Google Scholar
    • Export Citation
  • Wolters, D., C. van Heerwaarden, J. Vil-Guerau de Arellano, B. Cappelaere, and D. Ramier, 2010: Effects of soil moisture gradients on the path and the intensity of a West African squall line. Quart. J. Roy. Meteor. Soc., 136, 21622175.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J., 2004: Toward numerical modeling in the Terra Incognita. J. Atmos. Sci., 61, 18161826.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 618 253 19
PDF Downloads 508 203 12

Influence of the Background Wind on the Local Soil Moisture–Precipitation Feedback

Paul FroidevauxInstitute for Atmospheric and Climate Science, ETH Zürich, Zurich, and Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Bern, Switzerland

Search for other papers by Paul Froidevaux in
Current site
Google Scholar
PubMed
Close
,
Linda SchlemmerMax Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Linda Schlemmer in
Current site
Google Scholar
PubMed
Close
,
Juerg SchmidliInstitute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Juerg Schmidli in
Current site
Google Scholar
PubMed
Close
,
Wolfgang LanghansEarth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, and Centre for Climate Systems Modeling (C2SM), Zurich, Switzerland

Search for other papers by Wolfgang Langhans in
Current site
Google Scholar
PubMed
Close
, and
Christoph SchärInstitute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Christoph Schär in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The importance of soil moisture anomalies on airmass convection over semiarid regions has been recognized in several studies. The underlying mechanisms remain partly unclear. An open question is why wetter soils can result in either an increase or a decrease of precipitation (positive or negative soil moisture–precipitation feedback, respectively). Here an idealized cloud-resolving modeling framework is used to explore the local soil moisture–precipitation feedback. The approach is able to replicate both positive and negative feedback loops, depending on the environmental parameters.

The mechanism relies on horizontal soil moisture variations, which may develop and intensify spontaneously. The positive expression of the feedback is associated with the initiation of convection over dry soil patches, but the convective cells then propagate over wet patches where they strengthen and preferentially precipitate. The negative feedback may occur when the wind profile is too weak to support the propagation of convective features from dry to wet areas. Precipitation is then generally weaker and falls preferentially over dry patches. The results highlight the role of the midtropospheric flow in determining the sign of the feedback. A key element of the positive feedback is the exploitation of both low convective inhibition (CIN) over dry patches (for the initiation of convection) and high CAPE over wet patches (for the generation of precipitation).

Corresponding author address: Paul Froidevaux, Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland. E-mail: paul.froidevaux@giub.unibe.ch

Abstract

The importance of soil moisture anomalies on airmass convection over semiarid regions has been recognized in several studies. The underlying mechanisms remain partly unclear. An open question is why wetter soils can result in either an increase or a decrease of precipitation (positive or negative soil moisture–precipitation feedback, respectively). Here an idealized cloud-resolving modeling framework is used to explore the local soil moisture–precipitation feedback. The approach is able to replicate both positive and negative feedback loops, depending on the environmental parameters.

The mechanism relies on horizontal soil moisture variations, which may develop and intensify spontaneously. The positive expression of the feedback is associated with the initiation of convection over dry soil patches, but the convective cells then propagate over wet patches where they strengthen and preferentially precipitate. The negative feedback may occur when the wind profile is too weak to support the propagation of convective features from dry to wet areas. Precipitation is then generally weaker and falls preferentially over dry patches. The results highlight the role of the midtropospheric flow in determining the sign of the feedback. A key element of the positive feedback is the exploitation of both low convective inhibition (CIN) over dry patches (for the initiation of convection) and high CAPE over wet patches (for the generation of precipitation).

Corresponding author address: Paul Froidevaux, Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland. E-mail: paul.froidevaux@giub.unibe.ch
Save