• Abma, D., T. Heus, and J. P. Mellado, 2013: Direct numerical simulation of evaporative cooling at the lateral boundary of shallow cumulus clouds. J. Atmos. Sci., 70, 20882102.

    • Search Google Scholar
    • Export Citation
  • Adrian, R. J., 2007: Hairpin vortex organization in wall turbulence. Phys. Fluids,19, 041301, doi:10.1063/1.2717527.

  • Andreas, E. L, 1998: A new sea spray generation function for wind speeds up to 32 m s−1. J. Phys. Oceanogr., 28, 21752184.

  • Andreas, E. L, 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 14291440.

  • Andreas, E. L, 2010: Spray-mediated enthalpy flux to the atmosphere and salt flux to the ocean in high winds. J. Phys. Oceanogr., 40, 608619.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 2011: Fallacies of the enthalpy transfer coefficient over the ocean in high winds. J. Atmos. Sci., 68, 14351445.

  • Andreas, E. L, and K. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 37413751.

  • Andreas, E. L, and J. DeCosmo, 2002: The signature of sea spray in the HEXOS turbulent heat flux data. Bound.-Layer Meteor., 103, 303333.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, P. O. G. Persson, and J. E. Hare, 2008: A bulk turbulent air–sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr., 38, 15811596.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., C. W. Fairall, S. A. Michelson, and L. Bianco, 2011: Parameterizations of sea-spray impact on the air–sea momentum and heat fluxes. Mon. Wea. Rev., 139, 37813797.

    • Search Google Scholar
    • Export Citation
  • Bell, M., M. Montgomery, and K. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222.

    • Search Google Scholar
    • Export Citation
  • Bianco, L., J.-W. Bao, C. W. Fairall, and S. A. Michelson, 2011: Impact of sea-spray on the atmospheric surface layer. Bound.-Layer Meteor., 140, 361381.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, doi:10.1007/BF01030791.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374.

    • Search Google Scholar
    • Export Citation
  • Businger, S., and J. A. Businger, 2001: Viscous dissipation of turbulence kinetic energy in storms. J. Atmos. Sci., 58, 37933796.

  • Clift, R., J. R. Grace, and M. E. Weber, 1978: Bubbles, Drops, and Particles. Academic Press, 400 pp.

  • DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results. J. Geophys. Res., 101 (C5), 12 00112 016.

    • Search Google Scholar
    • Export Citation
  • Donelan, M., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett.,31, L18306, doi:10.1029/2004GL019460.

  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64, 11031115.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2, 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 (C2), 37473764.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., M. L. Banner, W. L. Peirson, W. Asher, and R. P. Morison, 2009: Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res., 114, C10001, doi:10.1029/2008JC004918.

    • Search Google Scholar
    • Export Citation
  • Haus, B. K., D. Jeong, M. A. Donelan, J. A. Zhang, and I. Savelyev, 2010: Relative rates of sea-air heat transfer and frictional drag in very high winds. Geophys. Res. Lett.,37, L07802, doi:10.1029/2009GL042206.

  • Jeong, D., B. K. Haus, and M. A. Donelan, 2012: Enthalpy transfer across the air–water interface in high winds including spray. J. Atmos. Sci., 69, 27332748.

    • Search Google Scholar
    • Export Citation
  • Joly, A., and Coauthors, 1997: The Fronts and Atlantic Storm-Track Experiment (FASTEX): Scientific objectives and experimental design. Bull. Amer. Meteor. Soc., 78, 19171940.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., 1998: Air-sea exchange of heat in the presence of wind waves and spray. J. Geophys. Res., 103 (C1), 11371152.

  • Mellado, J. P., 2010: The evaporatively driven cloud-top mixing layer. J. Fluid Mech., 660, 536, doi:10.1017/S0022112010002831.

  • Mueller, J. A., and F. Veron, 2009: A sea state–dependent spume generation function. J. Phys. Oceanogr., 39, 23632372.

  • NOAA Science Advisory Board, 2006: Majority report. Hurricane Intensity Research Working Group Majority Rep., 66 pp. [Available online at http://www.sab.noaa.gov/Reports/HIRWG_final73.pdf.]

  • Ranz, W. E., and W. R. Marshall Jr., 1952: Evaporation from drops. Chem. Eng. Prog., 48, 141146.

  • Richter, D. H., and P. P. Sullivan, 2013a: Momentum transfer in a turbulent, particle-laden Couette flow. Phys. Fluids,25, 053304, doi:10.1063/1.4804391.

  • Richter, D. H., and P. P. Sullivan, 2013b: Sea surface drag and the role of spray. Geophys. Res. Lett., 40, 656660, doi:10.1002/grl.50163.

    • Search Google Scholar
    • Export Citation
  • Rouson, D., and J. Eaton, 2001: On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech., 428, 149169.

    • Search Google Scholar
    • Export Citation
  • Spalart, P. R., R. D. Moser, and M. M. Rogers, 1991: Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comput. Phys., 96, 297324.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett.,35, L14813, doi:10.1029/2008GL034374.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 150 55 9
PDF Downloads 110 25 2

The Sea Spray Contribution to Sensible Heat Flux

David H. RichterNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David H. Richter in
Current site
Google Scholar
PubMed
Close
and
Peter P. SullivanNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Peter P. Sullivan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Direct numerical simulations (DNS) of turbulent Couette flow are combined with Lagrangian point-particle tracking to investigate the effects of a dispersed phase on bulk passive heat transport when the two phases can exchange both momentum and sensible heat. The idealized setup allows a fixed number of particles, without the influence of gravity, to be transported by carrier-phase motions across the mean velocity and temperature gradients that exist between the solid boundaries of turbulent Couette flow. In this way, the setup serves as a model of spray in a shear-dominated layer in the immediate vicinity of the water surface and provides insight into the ability of spray to enhance sensible heat fluxes. The authors find that the dispersed phase contributes a relatively large amount of vertical heat transport and increases the total heat flux across the domain by 25% or greater. Particles that accumulate in regions associated with wall-normal ejections efficiently carry heat across the channel. Furthermore, the authors find that the relative contribution of the dispersed-phase heat flux becomes larger with Reynolds number, suggesting an importance at atmospheric scales.

Current affiliation: Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana.

Corresponding author address: David Richter, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 45665. E-mail: david.richter.26@nd.edu

Abstract

Direct numerical simulations (DNS) of turbulent Couette flow are combined with Lagrangian point-particle tracking to investigate the effects of a dispersed phase on bulk passive heat transport when the two phases can exchange both momentum and sensible heat. The idealized setup allows a fixed number of particles, without the influence of gravity, to be transported by carrier-phase motions across the mean velocity and temperature gradients that exist between the solid boundaries of turbulent Couette flow. In this way, the setup serves as a model of spray in a shear-dominated layer in the immediate vicinity of the water surface and provides insight into the ability of spray to enhance sensible heat fluxes. The authors find that the dispersed phase contributes a relatively large amount of vertical heat transport and increases the total heat flux across the domain by 25% or greater. Particles that accumulate in regions associated with wall-normal ejections efficiently carry heat across the channel. Furthermore, the authors find that the relative contribution of the dispersed-phase heat flux becomes larger with Reynolds number, suggesting an importance at atmospheric scales.

Current affiliation: Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana.

Corresponding author address: David Richter, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 45665. E-mail: david.richter.26@nd.edu
Save