• Blossey, P. N., C. S. Bretherton, and M. C. Wyant, 2009: Subtropical low cloud response to a warmer climate in a superparameterized climate model. Part II: Column modeling with a cloud resolving model. J. Adv. Model. Earth Syst.,1, 8, doi:10.3894/JAMES.2009.1.8.

  • Blossey, P. N., Z. Kuang, and D. M. Romps, 2010: Isotopic composition of water in the tropical tropopause layer in cloud-resolving simulations of an idealized tropical circulation. J. Geophys. Res.,115, D24309, doi:10.1029/2010JD014554.

  • Bretherton, C. S., P. N. Blossey, and M. E. Peters, 2006: Interpretation of simple and cloud-resolving simulations of moist convection–radiation interaction with a mock-Walker circulation. Theor. Comput. Fluid Dyn., 20, 421442.

    • Search Google Scholar
    • Export Citation
  • Carr, M. T., and C. S. Bretherton, 2001: Convective momentum transport over the tropical pacific: Budget estimates. J. Atmos. Sci., 58, 16731693.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., 1977: Viscous internal gravity waves and low-frequency oscillations in the tropics. J. Atmos. Sci., 34, 901910.

  • Chang, C. P., and H. Lim, 1982: On the effects of viscous damping on equatorial Rossby waves. J. Atmos. Sci., 39, 17261733.

  • Clayson, C. A., and L. Kantha, 2008: On turbulence and mixing in the free atmosphere inferred from high-resolution soundings. J. Atmos. Oceanic Technol., 25, 833852.

    • Search Google Scholar
    • Export Citation
  • Clough, S., M. Shephard, E. Mlawer, J. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244.

    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2011a: Interpolation of LES cloud surfaces for use in direct calculations of entrainment and detrainment. Mon. Wea. Rev., 139, 444456.

    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2011b: The influence of the cloud shell on tracer budget measurements of LES cloud entrainment. J. Atmos. Sci., 68, 29092920.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Grabowski, W. W., J.-I. Yano, and M. W. Moncrieff, 2000: Cloud resolving modeling of tropical circulations driven by large-scale SST gradients. J. Atmos. Sci., 57, 20222040.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., R. Kershaw, and P. M. Inness, 1997: Parametrization of momentum transport by convection. II: Tests in single-column and general circulation models. Quart. J. Roy. Meteor. Soc., 123, 11531183.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and D. E. Colton, 1972: A diagnostic study of the vorticity balance at 200 mb in the tropics during the northern summer. J. Atmos. Sci., 29, 11241128.

    • Search Google Scholar
    • Export Citation
  • Houze, R., 1973: A climatological study of vertical transports by cumulus-scale convection. J. Atmos. Sci., 30, 11121123.

  • Iacono, M., J. Delamere, E. Mlawer, M. Shephard, S. Clough, and W. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1976: The role of convective-scale precipitation downdrafts in cumulus and synoptic-scale interactions. J. Atmos. Sci., 33, 18901910.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D., E. Zipser, and M. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839856.

  • Kuang, Z., 2008: Modeling the interaction between cumulus convection and linear gravity waves using a limited-domain cloud system–resolving model. J. Atmos. Sci., 65, 576591.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2011: The wavelength dependence of the gross moist stability and the scale selection in the instability of column-integrated moist static energy. J. Atmos. Sci., 68, 6174.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., C. Wang, and B. E. Mapes, 2009: A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies. J. Climate, 22, 272284.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1983: Momentum transport by a line of cumulonimbus. J. Atmos. Sci., 40, 18151834.

  • Lin, J. L., M. Zhang, and B. Mapes, 2005: Zonal momentum budget of the Madden–Julian oscillation: The source and strength of equivalent linear damping. J. Atmos. Sci., 62, 21722188.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., B. E. Mapes, and W. Han, 2008: What are the sources of mechanical damping in Matsuno–Gill-type models? J. Climate, 21, 165179.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1952: The slopes of cumulus clouds in relation to external wind shear. Quart. J. Roy. Meteor. Soc., 78, 530542.

  • Mapes, B. E., and X. Wu, 2001: Convective eddy momentum tendencies in long cloud-resolving model simulations. J. Atmos. Sci., 58, 517526.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parametrization. Quart. J. Roy. Meteor. Soc., 118, 819850.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and X. Zeng, 2000: Instability and large-scale circulations in a two-column model of the tropical troposphere. Quart. J. Roy. Meteor. Soc., 126, 31173135.

    • Search Google Scholar
    • Export Citation
  • Robe, F. R., and K. A. Emanuel, 2001: The effect of vertical wind shear on radiative–convective equilibrium states. J. Atmos. Sci., 58, 14271445.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2008: The dry-entropy budget of a moist atmosphere. J. Atmos. Sci., 65, 37793799.

  • Romps, D. M., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 19081927.

  • Romps, D. M., 2012a: Numerical tests of the weak pressure gradient approximation. J. Atmos. Sci., 69, 28462856.

  • Romps, D. M., 2012b: On the equivalence of two schemes for convective momentum transport. J. Atmos. Sci., 69, 34913500.

  • Romps, D. M., 2012c: Weak pressure gradient approximation and its analytical solutions. J. Atmos. Sci., 69, 28352845.

  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and R. S. Lindzen, 1976: A discussion of the parameterization of momentum exchange by cumulus convection. J. Geophys. Res., 81, 31583160.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and R. S. Lindzen, 1977: Axially symmetric steady-state models of the basic state for instability and climate studies. Part I. Linearized calculations. J. Atmos. Sci., 34, 263279.

    • Search Google Scholar
    • Export Citation
  • Seager, R., 1991: A simple model of the climatology and variability of the low-level wind field in the tropics. J. Climate, 4, 164179.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009: The moisture mode in the quasi-equilibrium tropical circulation model. Part II: Nonlinear behavior on an equatorial β plane. J. Atmos. Sci., 66, 15251542.

    • Search Google Scholar
    • Export Citation
  • Wilson, R., 2004: Turbulent diffusivity in the free atmosphere inferred from MST radar measurements: A review. Ann. Geophys., 22, 38693887.

    • Search Google Scholar
    • Export Citation
  • Wu, X., and M. Yanai, 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., D. S. Battisti, and E. S. Sarachik, 2000: Rayleigh friction, Newtonian cooling, and the linear response to steady tropical heating. J. Atmos. Sci., 57, 19371957.

    • Search Google Scholar
    • Export Citation
  • Yang, W., R. Seager, and M. A. Cane, 2013: Zonal momentum balance in the tropical atmospheric circulation during the global monsoon mature months. J. Atmos. Sci., 70, 583599.

    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and J. D. Neelin, 1997: Analytic approximations for moist convectively adjusted regions. J. Atmos. Sci., 54, 10541063.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 282 118 26
PDF Downloads 219 90 8

Rayleigh Damping in the Free Troposphere

David M. RompsDepartment of Earth and Planetary Science, University of California, Berkeley, and Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by David M. Romps in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper explores whether cumulus drag (i.e., the damping of winds by convective momentum transport) can be described by an effective Rayleigh drag (i.e., the damping of winds on a constant time scale). Analytical expressions are derived for the damping time scale and descent speed of wind profiles as caused by unorganized convection. Unlike Rayleigh drag, which has a constant damping time scale and zero descent speed, the theory predicts a damping time scale and a descent speed that both depend on the vertical wavelength of the wind profile. These results predict that short wavelengths damp faster and descend faster than long wavelengths, and these predictions are confirmed using large-eddy simulations. Both theory and simulations predict that the convective damping of large-scale circulations occurs on a time scale of O(1–10) days for vertical wavelengths in the range of 2–10 km.

Corresponding author address: David M. Romps, Department of Earth and Planetary Science, 377 McCone Hall, University of California, Berkeley, Berkeley, CA 94720. E-mail: romps@berkeley.edu

Abstract

This paper explores whether cumulus drag (i.e., the damping of winds by convective momentum transport) can be described by an effective Rayleigh drag (i.e., the damping of winds on a constant time scale). Analytical expressions are derived for the damping time scale and descent speed of wind profiles as caused by unorganized convection. Unlike Rayleigh drag, which has a constant damping time scale and zero descent speed, the theory predicts a damping time scale and a descent speed that both depend on the vertical wavelength of the wind profile. These results predict that short wavelengths damp faster and descend faster than long wavelengths, and these predictions are confirmed using large-eddy simulations. Both theory and simulations predict that the convective damping of large-scale circulations occurs on a time scale of O(1–10) days for vertical wavelengths in the range of 2–10 km.

Corresponding author address: David M. Romps, Department of Earth and Planetary Science, 377 McCone Hall, University of California, Berkeley, Berkeley, CA 94720. E-mail: romps@berkeley.edu
Save