• Baker, B., , and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45, 12821290.

    • Search Google Scholar
    • Export Citation
  • Berenguer, M., , and I. Zawadzki, 2008: A study of the error covariance matrix of radar rainfall estimates in stratiform rain. Wea. Forecasting, 23, 10851101.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., , C. Emersic, , and P. R. Field, 2012: A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos. Chem. Phys., 12, 20552076.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., , A. Protat, , J. Testud, , D. Bouniol, , A. J. Heymsfield, , A. Bansemer, , P. R. A. Brown, , and R. M. Forbes, 2005: Statistical properties of the normalized ice particle size distribution. J. Geophys. Res., 110, D10201, doi:10.1029/2004JD005405.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , R. J. Hogan, , P. R. A. Brown, , A. J. Illingworth, , T. W. Choularton, , and R. J. Cotton, 2005: Parameterization of ice particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 19972017.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , A. J. Heymsfield, , and A. Bansemer, 2007: Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci., 64, 43464365.

    • Search Google Scholar
    • Export Citation
  • Gaussiat, N., , H. Sauvageot, , and A. J. Illingworth, 2003: Cloud liquid water and ice content retrieval by multiwavelength radar. J. Atmos. Oceanic Technol., 20, 12641275.

    • Search Google Scholar
    • Export Citation
  • Gosset, M., , and H. Sauvageot, 1992: A dual-wavelength radar method for ice-water characterization in mixed-phase clouds. J. Atmos. Oceanic Technol., 9, 538547.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , Z. Wang, , and S. Matrosov, 2005: Improved radar ice water content retrieval algorithms using coincident microphysical and radar measurements. J. Appl. Meteor., 44, 13911412.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., , and A. J. Illingworth, 1999: The potential of spaceborne dual-wavelength radar to make global measurements of cirrus clouds. J. Atmos. Oceanic Technol., 16, 518531.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., , A. J. Illingworth, , and H. Sauvageot, 2000: Measuring crystal size in cirrus using 35- and 94-GHz radars. J. Atmos. Oceanic Technol., 17, 2737.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., , L. Tian, , P. Brown, , C. Westbrook, , A. Heymsfield, , and J. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol, 51, 655671.

    • Search Google Scholar
    • Export Citation
  • Josset, D., , S. Tanelli, , Y. Hu, , J. Pelon, , and P. Zhai, 2013: Analysis of water vapor correction for Cloudsat W-band radar. IEEE Trans. Geosci. Remote Sens., 51, 38123825.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., , A. Seed, , and I. Zawadzki, 2007: Modeling the variability of drop size distribution in space and time. J. Appl. Meteor. Climatol., 46, 742756.

    • Search Google Scholar
    • Export Citation
  • Liao, L., , and R. Meneghini, 2011: A study on the feasibility of dual-wavelength radar for identification of hydrometeor phases. J. Appl. Meteor. Climatol., 50, 449456.

    • Search Google Scholar
    • Export Citation
  • Liao, L., , R. Meneghini, , T. Iguchi, , and A. Detwiler, 2005: Use of dual-wavelength radar for snow parameter estimates. J. Atmos. Oceanic Technol., 22, 14941506.

    • Search Google Scholar
    • Export Citation
  • Liao, L., , R. Meneghini, , L. Tian, , and G. M. Heymsfield, 2008: Retrieval of snow and rain from combined X- and W-band airborne radar measurements. IEEE Trans. Geosci. Remote Sens., 46, 15141524.

    • Search Google Scholar
    • Export Citation
  • Liao, L., , R. Meneghini, , L. Tian, , and G. M. Heymsfield, 2009: Measurements and simulations of nadir-viewing radar returns from the melting layer at X and W bands. J. Appl. Meteor. Climatol., 48, 22152226.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., 1985: An updated model for millimeter wave propagation in moist air. Radio Sci., 20, 10691089.

  • Matrosov, S. Y., 1993: Possibilities of cirrus particle sizing from dual-frequency radar measurements. J. Geophys. Res., 98 (D11), 20 67520 683.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1998: A dual-wavelength radar method to measure snowfall rate. J. Appl. Meteor., 37, 15101521.

  • Matrosov, S. Y., 2011: Feasibility of using radar differential Doppler velocity and dual-frequency ratio for sizing particles in thick ice clouds. J. Geophys. Res., 116, D17202, doi:10.1029/2011JD015857.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., , A. J. Heymsfield, , and Z. Wang, 2005: Dual-frequency ratio of non-spherical atmospheric hydrometeors. Geophys. Res. Lett., 32, L13816, doi:10.1029/2005GL023210.

    • Search Google Scholar
    • Export Citation
  • Sekelsky, S. M., , W. L. Ecklund, , J. M. Firda, , K. S. Gage, , and R. E. McIntosh, 1999: Particle size estimation in ice-phase clouds using multifrequency radar reflectivity measurements at 95, 33, and 2.8 GHz. J. Appl. Meteor., 38, 528.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., , and I. Zawadzki, 2010: Snow studies. Part II: Average relationship between mass of snowflakes and their terminal fall velocity. J. Atmos. Sci., 67, 33193335.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., , and I. Zawadzki, 2014: Snow studies. Part III: Theoretical derivations for the ensemble retrieval of snow microphysics from dual-wavelength vertically pointing radars. J. Atmos. Sci.,71, 1158–1170.

  • Szyrmer, W., , A. Tatarevic, , and P. Kollias, 2012: Ice clouds microphysical retrieval using 94-GHz Doppler radar observations. Part I: Basic relations within the retrieval framework. J. Geophys. Res., 117, D14203, doi:10.1029/2011JD016675.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., , B. Martner, , M. K. Politovich, , and G. Zhang, 1999: Retrieval of atmospheric liquid and ice characteristics using dual-wavelength radar observations. IEEE Trans. Geosci. Remote Sens., 37, 23252334.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., , G. Zhang, , and M. K. Politovich, 2001: An assessment of droplet size and liquid water content derived from dual-wavelength radar measurements to the application of aircraft icing detection. J. Atmos. Oceanic Technol., 18, 17871798.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , G. M. Heymsfield, , L. Li, , and A. J. Heymsfield, 2005: Retrieving optically thick ice cloud microphysical properties by using airborne dual-wavelength radar measurements. J. Geophys. Res., 110, D19201, doi:10.1029/2005JD005969.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., , and K. S. Gage, 2009: Raindrop size distribution variability estimated using ensemble statistics. Ann. Geophys., 27, 555567, doi:10.5194/angeo-27-555-2009.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, T., , and H. Tanaka, 1984: Microphysical process of melting snowflakes detected by two-wavelength radar: Part I. Principle of measurement based on model calculation. J. Meteor. Soc. Japan, 62, 650666.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, T., , H. Tanaka, , K. Nakamura, , and J. Awaka, 1984: Microphysical process of melting snowflakes detected by two-wavelength radar: Part II. Application of two-wavelength radar technique. J. Meteor. Soc. Japan, 62, 668677.

    • Search Google Scholar
    • Export Citation
  • Yoshida, Y., , S. Asano, , and K. Iwanami, 2006: Retrieval of microphysical properties of water, ice, and mixed-phase clouds using a triple-wavelength radar and microwave radiometer. J. Meteor. Soc. Japan, 84, 10051031, doi:10.2151/jmsj.84.1005.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., , and B. P. Treserras, 2012: Ensemble retrievals. Proc. Seventh European Conf. on Radar in Meteorology and Hydrology, Toulouse, France, Météo-France, 4A.6.

  • Zawadzki, I., , W. Szyrmer, , and S. Laroche, 2000: Diagnostic of supercooled clouds from single-Doppler observations in regions of radar-detectable snow. J. Appl. Meteor., 39, 10411058.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 28 28 4
PDF Downloads 13 13 2

Snow Studies. Part IV: Ensemble Retrieval of Snow Microphysics from Dual-Wavelength Vertically Pointing Radars

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
© Get Permissions
Restricted access

Abstract

Based on the theory developed in Part III, this paper introduces a new method to retrieve snow microphysics from ground-based collocated X- and W-band vertically pointing Doppler radars. To take into account the variety of microphysical relations observed in natural precipitating snow and to quantify the uncertainty in the retrieval results caused by this variety, the retrieval is formulated using the ensemble-based method. The ensemble is determined by the spread of uncertainties in the microphysical descriptions applied to map the same radar observables to the retrieved quantities.

The model descriptors use diverse assumptions concerning functional forms of particle size distribution and mass–velocity relations, all taken from previous observational studies. The mean of each ensemble is assumed to be the best estimate of the retrieval while its spread is defined by the standard deviation that characterizes its uncertainty. The main retrieved products are the characteristic size, the snow mass content, and the density parameter, as well as the vertical air motion. Four observables used in the retrieval are the difference in reflectivities and in Doppler velocities at two wavelengths, together with the equivalent reflectivity factor and Doppler velocity at X band. The solutions that are not consistent with all four observables after taking into account their estimated measurement errors are eliminated from the ensembles. The application of the retrieval algorithm to the real data yields a snow microphysical description that agrees with the snow characteristics seen in the vertical profile of the observed Doppler spectrum.

Corresponding author address: Isztar Zawadzki, Dept. of Atmospheric and Oceanic Sciences, McGill University, Montreal QC H3A 0B9, Canada. E-mail: isztar.zawadzki@mcgill.ca

Abstract

Based on the theory developed in Part III, this paper introduces a new method to retrieve snow microphysics from ground-based collocated X- and W-band vertically pointing Doppler radars. To take into account the variety of microphysical relations observed in natural precipitating snow and to quantify the uncertainty in the retrieval results caused by this variety, the retrieval is formulated using the ensemble-based method. The ensemble is determined by the spread of uncertainties in the microphysical descriptions applied to map the same radar observables to the retrieved quantities.

The model descriptors use diverse assumptions concerning functional forms of particle size distribution and mass–velocity relations, all taken from previous observational studies. The mean of each ensemble is assumed to be the best estimate of the retrieval while its spread is defined by the standard deviation that characterizes its uncertainty. The main retrieved products are the characteristic size, the snow mass content, and the density parameter, as well as the vertical air motion. Four observables used in the retrieval are the difference in reflectivities and in Doppler velocities at two wavelengths, together with the equivalent reflectivity factor and Doppler velocity at X band. The solutions that are not consistent with all four observables after taking into account their estimated measurement errors are eliminated from the ensembles. The application of the retrieval algorithm to the real data yields a snow microphysical description that agrees with the snow characteristics seen in the vertical profile of the observed Doppler spectrum.

Corresponding author address: Isztar Zawadzki, Dept. of Atmospheric and Oceanic Sciences, McGill University, Montreal QC H3A 0B9, Canada. E-mail: isztar.zawadzki@mcgill.ca
Save