• Atkins, N. T., , and M. St. Laurent, 2009: Bow echo mesovortices. Part II: Their genesis. Mon. Wea. Rev., 137, 15141532.

  • Bister, M., , and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1990: Evolution and structure of the 6–7 May 1985 mesoscale convective system and associated vortex. Mon. Wea. Rev., 118, 109127.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., , and C. L. Ziegler, 1993: Mesoscale downdraft influences on vertical vorticity in a mature mesoscale convective system. Mon. Wea. Rev., 121, 13371353.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., , D. J. Stensrud, , and M. B. Richman, 2004: An observational study of derecho-producing convective systems. Wea. Forecasting, 19, 320337.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., , S. F. Corfidi, , and J. S. Kain, 2011: Environment and early evolution of the 8 May 2009 derecho-producing convective system. Mon. Wea. Rev., 139, 10831102.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., , S. F. Corfidi, , and J. S. Kain, 2012: Views on applying RKW theory: An illustration using the 8 May 2009 derecho-producing convective system. Mon. Wea. Rev., 140, 10231043.

    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., , and M. T. Montgomery, 2009: Clarification on the generation of absolute and potential vorticity in mesoscale convective vortices. Atmos. Chem. Phys., 9, 75917605.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., , M. D. Parker, , and L. J. Wicker, 2012: Uncertainties in trajectory calculations within near-surface mesocyclones of simulated supercells. Mon. Wea. Rev., 140, 29592966.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and M. L. Weisman, 1994: Balanced dynamics of mesoscale vortices produced in simulated convective systems. J. Atmos. Sci., 51, 20052030.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and S. B. Trier, 2007: Mesoscale convective vortices observed during BAMEX. Part I: Kinematic and thermodynamic structure. Mon. Wea. Rev., 135, 20292049.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and T. J. Galarneau, 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686704.

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., , M. T. Montgomery, , and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., , J. D. Murphy, , and J. S. Kain, 1994: Warm core vortex amplification over land. J. Atmos. Sci., 51, 17801807.

  • Gamache, J. F., , and R. A. Houze, 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118135.

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700.

  • James, E. P., , and R. H. Johnson, 2010: Patterns of precipitation and mesolow evolution in midlatitude mesoscale convective vortices. Mon. Wea. Rev., 138, 909931.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada 753 level 2.5 scheme in the NCEP Meso Model. NOAA/NWS/NCEP Office Note 437, 61 pp.

  • Lese, A. D., , and S. Martinaitis, 2010: Observations and quantification of counter-rotating mesovortex couplets within the 8 May 2009 southern Missouri derecho. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 3B.3. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_175427.htm.]

  • McTaggart-Cowan, R., , G. D. Deane, , L. F. Bosart, , C. A. Davis, , and T. J. Galarneau Jr., 2008: Climatology of tropical cyclogenesis in the North Atlantic (1948–2004). Mon. Wea. Rev., 136, 12841304.

    • Search Google Scholar
    • Export Citation
  • Melhauser, C., , and F. Zhang, 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 33503371.

    • Search Google Scholar
    • Export Citation
  • Menard, R. D., , and J. M. Fritsch, 1989: A mesoscale convective complex-generated inertially stable warm core vortex. Mon. Wea. Rev., 117, 12371261.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., , F. Zhang, , P. Markowski, , D. Wu, , and K. Zhao, 2012: A modeling study on the development of a bowing structure and associated rear inflow within a squall line over South China. J. Atmos. Sci., 69, 11821207.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. E. Nicholls, , T. A. Cram, , and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Przybylinski, R. W., , J. S. Schaumann, , D. T. Cramer, , and N. T. Atkins, 2010: The 08 May 2009 Missouri derecho: Radar analysis and warning implications over parts of southwest Missouri. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 3B.1. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_176095.htm.]

  • Raymond, D. J., , and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077.

  • Rogers, R. F., , and J. M. Fritsch, 2001: Surface cyclogenesis from convectively driven amplification of midlevel mesoscale convective vortices. Mon. Wea. Rev., 129, 605637.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032.

  • Skamarock, W. C., , and M. L. Weisman, 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137, 488494.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Thompson, G., , P. R. Field, , W. D. Hall, , and R. M. Rasmussen, 2006: A new bulk microphysical parameterization for WRF. Extended Abstracts, 7th WRF Users’ Workshop, Boulder, Colorado, WRF, 5.3. [Available online at http://www.mmm.ucar.edu/wrf/users/workshops/WS2006/abstracts/Session05/5_3_Thompson.pdf.]

  • Trapp, R. J., , and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 28042823.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., , H. V. Murphey, , A. Nester, , D. P. Jorgensen, , and N. T. Atkins, 2006: High winds generated by bow echoes. Part I: Overview of the Omaha bow echo 5 July 2003 storm during BAMEX. Mon. Wea. Rev., 134, 27932829.

    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., , D. J. Stensrud, , S. L. Mullen, , and L. J. Wicker, 2010: On the predictability of mesoscale convection systems: Three-dimensional simulations. Mon. Wea. Rev., 138, 863885.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and C. A. Davis, 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci., 55, 26032622.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 27792803.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , C. Evans, , and L. Bosart, 2013: The 8 May 2009 super-derecho: Analysis of a real-time explicit convective forecast. Wea. Forecasting, 28, 863892.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., , and R. J. Trapp, 2008: The effect of mesoscale heterogeneity on the genesis and structure of mesovortices within quasi-linear convective systems. Mon. Wea. Rev., 136, 42204241.

    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., , B. J.-D. Jou, , and B. F. Smull, 1999: Formative stage of a long-lived mesoscale vortex observed by airborne Doppler radar. Mon. Wea. Rev., 127, 838857.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., , and J. M. Fritsch, 1987: Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown flood. Part II: Inertially stable warm-core vortex and the mesoscale convective complex. J. Atmos. Sci., 44, 25932612.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., , and J. M. Fritsch, 1988: A numerical investigation of a convectively generated, inertially stable, extratropical warm-core mesovortex over land. Part I: Structure and evolution. Mon. Wea. Rev., 116, 26602687.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 44 44 6
PDF Downloads 52 52 5

Development of an Intense, Warm-Core Mesoscale Vortex Associated with the 8 May 2009 “Super Derecho” Convective Event

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado, and Atmospheric Science Group, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
  • | 3 State University of New York, University at Albany, Albany, New York
© Get Permissions
Restricted access

Abstract

In this study, the dynamical processes contributing to warm-core meso-β-scale vortex formation associated with the 8 May 2009 “super derecho” are examined utilizing two complementary quasi-Lagrangian approaches—a circulation budget and backward trajectory analyses—applied to a fortuitous numerical simulation of the event. Warm-core meso-β-scale vortex formation occurs in a deeply moist, potentially stable environment that is conducive to the development of near-surface rotation and is somewhat atypical compared to known derecho-supporting environments.

Air parcels in the vicinity of the developing vortex primarily originate near the surface in the streamwise vorticity-rich environment, associated with the vertical wind shear of the low-level jet, immediately to the east of the eastward-moving system. Cyclonic vertical vorticity is generated along inflowing air parcels primarily by the ascent-induced tilting of streamwise vorticity and amplified primarily by ascent-induced vortex tube stretching. Descent-induced tilting of crosswise vorticity contributes to cyclonic vertical vorticity generation for the small population of air parcels in the vicinity of the developing vortex that originate to its north and west. No consistent source of preexisting vertical vorticity is present within the environment.

Cyclonic circulation on the scale of the warm-core meso-β-scale vortex increases in the lower troposphere in response to the mean vortex-scale convergence of cyclonic absolute vorticity and the local expulsion of eddy anticyclonic vertical vorticity generated within the system’s cold pool. Increased cyclonic circulation is partially offset by the system-scale tilting of horizontal vorticity associated with the low-level jet, rear-inflow jet, environmental vertical wind shear, and rotational flow of the warm-core vortex itself.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-13-0167.s1.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Clark Evans, University of Wisconsin–Milwaukee, Dept. of Mathematical Sciences, P.O. Box 413, Milwaukee, WI 53201-0413. E-mail: evans36@uwm.edu

Abstract

In this study, the dynamical processes contributing to warm-core meso-β-scale vortex formation associated with the 8 May 2009 “super derecho” are examined utilizing two complementary quasi-Lagrangian approaches—a circulation budget and backward trajectory analyses—applied to a fortuitous numerical simulation of the event. Warm-core meso-β-scale vortex formation occurs in a deeply moist, potentially stable environment that is conducive to the development of near-surface rotation and is somewhat atypical compared to known derecho-supporting environments.

Air parcels in the vicinity of the developing vortex primarily originate near the surface in the streamwise vorticity-rich environment, associated with the vertical wind shear of the low-level jet, immediately to the east of the eastward-moving system. Cyclonic vertical vorticity is generated along inflowing air parcels primarily by the ascent-induced tilting of streamwise vorticity and amplified primarily by ascent-induced vortex tube stretching. Descent-induced tilting of crosswise vorticity contributes to cyclonic vertical vorticity generation for the small population of air parcels in the vicinity of the developing vortex that originate to its north and west. No consistent source of preexisting vertical vorticity is present within the environment.

Cyclonic circulation on the scale of the warm-core meso-β-scale vortex increases in the lower troposphere in response to the mean vortex-scale convergence of cyclonic absolute vorticity and the local expulsion of eddy anticyclonic vertical vorticity generated within the system’s cold pool. Increased cyclonic circulation is partially offset by the system-scale tilting of horizontal vorticity associated with the low-level jet, rear-inflow jet, environmental vertical wind shear, and rotational flow of the warm-core vortex itself.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-13-0167.s1.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Clark Evans, University of Wisconsin–Milwaukee, Dept. of Mathematical Sciences, P.O. Box 413, Milwaukee, WI 53201-0413. E-mail: evans36@uwm.edu

Supplementary Materials

    • Supplemental Materials (TIF 1.54 MB)
Save