• Badger, J., , and B. J. Hoskins, 2001: Simple initial value problems and mechanisms for baroclinic growth. J. Atmos. Sci., 58, 3849.

  • Badulin, S. I., , and V. I. Shrira, 1993: On the irreversibility of internal waves dynamics due to wave-trapping by mean flow inhomogeneities. Part 1. Local analysis. J. Fluid Mech., 251, 2153.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1972: Geostrophic adjustment. Rev. Geophys. Space Phys., 10, 485528.

  • Bosart, L. F., , W. E. Bracken, , and A. Seimon, 1998: A study of cyclone mesoscale structure with emphasis on a large-amplitude inertia–gravity waves. Mon. Wea. Rev., 126, 14971527.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., , and M. E. McIntyre, 2005: Wave capture and wave-vortex duality. J. Fluid Mech., 534, 6795.

  • Cahn, A., 1945: An investigation of the free oscillations of a simple current system. J. Meteor., 2, 113119.

  • Davis, C. A., , and K. A. Emanuel, 1991: Potential vorticity diagnosis of cyclogenesis. Mon. Wea. Rev., 119, 19291952.

  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 14931513.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., , and J. B. Klemp, 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 21522158.

  • Eliassen, A., , and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 123.

  • Fritts, D. C., , and G. D. Nastrom, 1992: Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation. J. Atmos. Sci., 49, 111127.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 488 pp.

  • Holton, J. R., , P. H. Haynes, , M. E. McIntyre, , A. R. Douglass, , R. B. Road, , and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403439.

    • Search Google Scholar
    • Export Citation
  • Hooke, W. H., 1986: Gravity waves. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 272–288 pp.

  • Jewett, B. F., , M. K. Ramamurthy, , and R. M. Rauber, 2003: Origin, evolution, and finescale structure of the St. Valentine’s Day mesoscale gravity wave observed during STORM-FEST. Part III: Gravity wave genesis and the role of evaporation. Mon. Wea. Rev., 131, 617633.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., , and J. D. Doyle, 2009: The impact of moisture on mountain waves during T-REX. Mon. Wea. Rev., 137, 38883906.

  • Kaplan, M. L., , and D. A. Paine, 1977: The observed divergence of the horizontal velocity field and pressure gradient force at the mesoscale. Beitr. Phys. Atmos., 50, 321330.

    • Search Google Scholar
    • Export Citation
  • Kaplan, M. L., , S. E. Koch, , Y.-L. Lin, , R. P. Weglarz, , and R. A. Rozumalski, 1997: Numerical simulations of a gravity wave event over CCOPE. Part I: The role of geostrophic adjustment in mesoscale jetlet formation. Mon. Wea. Rev., 125, 11851211.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., , and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452499.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., , S. D. Eckermann, , and H.-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , J. Dudhia, , and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., , and P. B. Dorian, 1988: A mesoscale gravity wave event observed during CCOPE. Part III: Wave environment and probable source mechanisms. Mon. Wea. Rev., 116, 25702592.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., , F. Zhang, , M. Kaplan, , Y.-L. Lin, , R. Weglarz, , and M. Trexler, 2001: Numerical simulation of a gravity wave event observed during CCOPE. Part III: The role of a mountain–plains solenoid in the generation of the second wave episode. Mon. Wea. Rev., 129, 909932.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and Coauthors, 2005: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci., 62, 38853908.

  • Koppel, L. L., , L. F. Bosart, , and D. Keyser, 2000: A 25-yr climatology of large-amplitude hourly surface pressure changes over the conterminous United States. Mon. Wea. Rev., 128, 5168.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , and M. J. Reeder, 2001: Convectively generated gravity waves and their effect on the cloud environment. J. Atmos. Sci., 58, 24272440.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , and F. Zhang, 2011: Coupling between gravity waves and tropical convection at mesoscales. J. Atmos. Sci., 68, 25822598.

  • Lane, T. P., , J. D. Doyle, , R. Plougonven, , M. A. Shapiro, , and R. D. Sharman, 2004: Observations and numerical simulations of inertia–gravity waves and shearing instabilities in the vicinity of a jet stream. J. Atmos. Sci., 61, 26922706.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., , and F. Zhang, 2008: Tracking gravity waves in baroclinic jet-front systems. J. Atmos. Sci., 65, 24022415.

  • Lin, Y.-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Marks, C. J., , and S. D. Eckermann, 1995: A three-dimensional nonhydrostatic ray-tracing model for gravity waves: Formulation and preliminary results for the middle atmosphere. J. Atmos. Sci., 52, 19591984.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., , and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 36953716.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and C. Snyder, 2005: Gravity waves excited by jets: Propagation versus generation. Geophys. Res. Lett., 32, L18802, doi:10.1029/2005GL023730.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and F. Zhang, 2014: Internal gravity waves from jets and fronts. Rev. Geophys.,doi:10.1002/2012RG000419, in press.

  • Plougonven, R., , H. Teitelbaum, , and V. Zeitlin, 2003: Inertia gravity wave generation by tropospheric midlatitude jet as given by the Fronts and Atlantic Storm-Track Experiment radio soundings. J. Geophys. Res., 108, 888889.

    • Search Google Scholar
    • Export Citation
  • Pokrandt, P. J., , G. J. Tripoli, , and D. D. Houghton, 1996: Processes leading to the formation of mesoscale waves in the Midwest cyclone of 15 December 1987. Mon. Wea. Rev., 124, 27262752.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., 1997: Numerical model simulation of a mesoscale gravity wave event: Sensitivity tests and spectral analysis. Mon. Wea. Rev., 125, 18381869.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., , and R. J. Reed, 1993: Numerical model simulation of the large-amplitude mesoscale gravity-wave event of 15 December 1987 in the central United States. Mon. Wea. Rev., 121, 22852308.

    • Search Google Scholar
    • Export Citation
  • Ramamurthy, M. K., , R. M. Rauber, , B. Collins, , and N. K. Malhotra, 1993: A comparative study of large-amplitude gravity-wave events. Mon. Wea. Rev., 121, 29512974.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., , M. Yang, , M. K. Ramamurthy, , and B. F. Jewett, 2001: Origin, evolution, and fine-scale structure of the St. Valentine’s Day mesoscale gravity wave observed during STORM-FEST. Part I: Origin and evolution. Mon. Wea. Rev., 129, 198217.

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1938: On the mutual adjustment of pressure and velocity distributions in certain simple current systems, ii. J. Mar. Res., 5,239263.

    • Search Google Scholar
    • Export Citation
  • Schneider, R. S., 1990: Large-amplitude mesoscale wave disturbances within the intense Midwest extratropical cyclone of 15 December 1987. Wea. Forecasting, 5, 533558.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37, 9941004.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., , and D. Keyser, 1990: Fronts, jet streams, and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 167–191.

  • Simmons, A. J., , and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN–475+STR, 113 pp.

  • Tan, Z., , F. Zhang, , R. Rotunno, , and C. Snyder, 2004: Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection. J. Atmos. Sci., 61, 17941804; Corrigendum, 65, 1479.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., , and S. E. Koch, 1987: The synoptic setting and possible source mechanisms for mesoscale gravity wave events. Mon. Wea. Rev., 115, 721729.

    • Search Google Scholar
    • Export Citation
  • Van Tuyl, A. H., , and J. A. Young, 1982: Numerical simulation of nonlinear jet streak adjustment. Mon. Wea. Rev., 110, 20382054.

  • Waite, M. L., , and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 1242–1256.

  • Wang, S., , and F. Zhang, 2007: Sensitivity of mesoscale gravity waves to the baroclinicity of jet-front systems. Mon. Wea. Rev., 135, 670688.

    • Search Google Scholar
    • Export Citation
  • Wang, S., , F. Zhang, , and C. C. Epifanio, 2010: Forced gravity wave response near the jet exit region in a linear model. Quart. J. Roy. Meteor. Soc., 136, 17731787.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., , and F. Zhang, 2004: A study of mesoscale gravity waves over the North Atlantic with satellite observations and a mesoscale model. J. Geophys. Res., 109, D22104, doi:10.1029/2004JD005090.

    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., , and J. M. Fritsch, 1988: Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown flood. Part III: Inertial gravity waves and the squall line. J. Atmos. Sci., 45, 12521268.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2004: Generation of mesoscale gravity waves in the upper-tropospheric jet-front systems. J. Atmos. Sci., 61, 440457.

  • Zhang, F., , and S. E. Koch, 2000: Numerical simulation of a gravity wave event over CCOPE. Part II: Wave generated by an orographic density current. Mon. Wea. Rev., 128, 27772796.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , S. E. Koch, , C. A. Davis, , and M. L. Kaplan, 2000: A survey of unbalanced flow diagnostics and their application. Adv. Atmos. Sci., 17, 165183.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , S. E. Koch, , C. A. Davis, , and M. L. Kaplan, 2001: Wavelet analysis and the governing dynamics of a large-amplitude gravity wave event along the east coast of the United States. Quart. J. Roy. Meteor. Soc., 127, 22092245.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , S. E. Koch, , and M. L. Kaplan, 2003: Numerical simulations of a large-amplitude gravity wave event. Meteor. Atmos. Phys., 84, 199216.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , N. Bei, , R. Rotunno, , C. Snyder, , and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 35793594.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , M. Zhang, , J. Wei, , and S. Wang, 2013: Month-long simulations of gravity waves over North America and North Atlantic in comparison with satellite observations. Acta Meteor. Sin., 27, 446454.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 6
PDF Downloads 46 46 4

Mesoscale Gravity Waves in Moist Baroclinic Jet–Front Systems

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

A series of cloud-permitting simulations with the Weather Research and Forecast model (WRF) are performed to study the characteristics and source mechanisms of mesoscale gravity waves in moist baroclinic jet–front systems with varying degrees of convective instability. These idealized experiments are initialized with the same baroclinic jet but with different initial moisture content, which produce different life cycles of moist baroclinic waves, to investigate the relative roles of moist processes and baroclinicity in the generation and propagation of mesoscale gravity waves. The dry experiment with no moisture or convection simulates gravity waves that are consistent with past modeling studies. An experiment with a small amount of moisture produces similar baroclinic life cycles to the dry experiment but with the introduction of weak convective instability. Subsequent initiation of convection, although weak, may considerably amplify the gravity waves that are propagating away from the upper-level jet exit region crossing the ridge to the jet entrance region. The weak convection also generates a new wave mode of shorter-scale wave packets that are believed to interact with, strengthen, and modify the dry gravity wave modes. Further increase of the moisture content (up to 5 times) leads to strong convective instability and vigorous moist convection. Besides a faster-growing moist baroclinic wave, the convectively generated gravity waves emerge much earlier, are more prevalent, and are larger in amplitude; they are fully coupled with, and hardly separable from, the dry gravity wave modes under the complex background moist baroclinic waves.

Corresponding author address: Prof. Fuqing Zhang, Dept. of Meteorology, The Pennsylvania State University, University Park, PA 16802. E-mail: fzhang@psu.edu

Abstract

A series of cloud-permitting simulations with the Weather Research and Forecast model (WRF) are performed to study the characteristics and source mechanisms of mesoscale gravity waves in moist baroclinic jet–front systems with varying degrees of convective instability. These idealized experiments are initialized with the same baroclinic jet but with different initial moisture content, which produce different life cycles of moist baroclinic waves, to investigate the relative roles of moist processes and baroclinicity in the generation and propagation of mesoscale gravity waves. The dry experiment with no moisture or convection simulates gravity waves that are consistent with past modeling studies. An experiment with a small amount of moisture produces similar baroclinic life cycles to the dry experiment but with the introduction of weak convective instability. Subsequent initiation of convection, although weak, may considerably amplify the gravity waves that are propagating away from the upper-level jet exit region crossing the ridge to the jet entrance region. The weak convection also generates a new wave mode of shorter-scale wave packets that are believed to interact with, strengthen, and modify the dry gravity wave modes. Further increase of the moisture content (up to 5 times) leads to strong convective instability and vigorous moist convection. Besides a faster-growing moist baroclinic wave, the convectively generated gravity waves emerge much earlier, are more prevalent, and are larger in amplitude; they are fully coupled with, and hardly separable from, the dry gravity wave modes under the complex background moist baroclinic waves.

Corresponding author address: Prof. Fuqing Zhang, Dept. of Meteorology, The Pennsylvania State University, University Park, PA 16802. E-mail: fzhang@psu.edu
Save