• Angell, J. K., 1988: Impact of El Niño on the delineation of tropospheric cooling due to volcanic eruptions. J. Geophys. Res., 93 (D4), 36973704.

    • Search Google Scholar
    • Export Citation
  • Ballarotta, M., 2013: The thermohaline circulation during the last glacial maximum and in the present-day climate. Ph.D. dissertation, Stockholm University, 150 pp.

  • Barnston, A. G., , M. Chelliah, , and S. B. Goldenberg, 1997: Documentation of a highly ENSO-related region in the equatorial Pacific. Atmos.–Ocean, 35, 367383.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., , A. M. Ekman, , and H. Rodhe, 2010: Response to the eruption of Mount Pinatubo in relation to climate sensitivity in the CMIP3 models. Climate Dyn., 35, 875886.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., , D. Dee, , K. Fielding, , M. Fuentes, , P. Kållberg, , S. Kobayashi, , and S. Uppala, 2009: The ERA-Interim archive. ERA Rep. Series 1, 23 pp.

  • Berrisford, P., , P. Kållberg, , S. Kobayashi, , D. Dee, , S. Uppala, , A. J. Simmons, , P. Poli, , and H. Sato, 2011: Atmospheric conservation properties in ERA-Interim. Quart. J. Roy. Meteor. Soc., 137, 13811399.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172.

  • Döös, K., , and J. Nilsson, 2011: Analysis of the meridional energy transport by atmospheric overturning circulations. J. Atmos. Sci., 68, 18061820.

    • Search Google Scholar
    • Export Citation
  • Döös, K., , J. Nilsson, , J. Nycander, , L. Brodeau, , and M. Ballarotta, 2012: The World Ocean thermohaline circulation. J. Phys. Oceanogr., 42, 14451460.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Hazeleger, W., and Coauthors, 2011: EC-Earth V2.2: Description and validation of a new seamless Earth system prediction model. Climate Dyn.,39, 2611–2629, doi:10.1007/s00382-011-1228-5.

  • Held, I. M., , and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56, 16881697.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Juckes, M., 2001: A generalization of the transformed Eulerian-mean meridional circulation. Quart. J. Roy. Meteor. Soc., 127, 147160.

    • Search Google Scholar
    • Export Citation
  • Kållberg, P., , P. Berrisford, , B. Hoskins, , A. J. Simmons, , S. Uppala, , S. Lamy-Thépaut, , and R. Hine, 2005: ERA-40 atlas. ERA-40 Project Rep. Series 19, 191 pp.

  • Karoly, D. J., , P. C. McIntosh, , P. Berrisford, , T. J. McDougall, , and A. C. Hirst, 1997: Similarities of the Deacon cell in the Southern Ocean and the Ferrel cells in the atmosphere. Quart. J. Roy. Meteor. Soc., 123, 519526.

    • Search Google Scholar
    • Export Citation
  • Kjellsson, J., , and K. Döös, 2012: Lagrangian decomposition of the Hadley and Ferrel cells. Geophys. Res. Lett., 39, L15807, doi:10.1029/2012GL052420.

    • Search Google Scholar
    • Export Citation
  • Laliberté, F., , T. Shaw, , and O. Pauluis, 2012: Moist recirculation and water vapor transport on dry isentropes. J. Atmos. Sci., 69, 875890.

    • Search Google Scholar
    • Export Citation
  • Laliberté, F., , T. Shaw, , and O. Pauluis, 2013: A theory for the lower-tropospheric structure of the moist isentropic circulation. J. Atmos. Sci., 70, 843854.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., , S. Lee, , and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climatic Change,3, 571–576.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. Chen, , and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., , and T. J. McDougall, 1996: Isopycnal averaging and the residual mean circulation. J. Phys. Oceanogr., 26, 16551660.

  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., , and P. O’Gorman, 2011: An energetic perspective on the regional response of precipitation to climate change. Nat. Climate Change, 1, 266271.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., , and J. J. Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate, 9, 27512767.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., , and A. A. Mrowiec, 2013: Isentropic analysis of convective motions. J. Atmos. Sci.,70, 3673–3688.

  • Pauluis, O. M., , A. Czaja, , and R. Korty, 2008: The global atmospheric circulation on moist isentropes. Science, 321, 10751078.

  • Pauluis, O. M., , A. Czaja, , and R. Korty, 2010: The global atmospheric circulation in moist isentropic coordinates. J. Climate, 23, 30773093.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., , and A. H. Oort, 1992: Physics of Climate. Springer-Verlag, 520 pp.

  • Seager, R., , N. Harnik, , Y. Kushnir, , W. Robinson, , and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinate. Mon. Wea. Rev., 109, 758766.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., and Coauthors, 2012: A look at the ocean in the EC-Earth climate model. Climate Dyn., 39, 26312657.

  • Tokinaga, H., , S.-P. Xie, , C. Deser, , Y. Kosaka, , and Y. M. Okumura, 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439444.

    • Search Google Scholar
    • Export Citation
  • Townsend, R. D., , and D. R. Johnson, 1985: A diagnostic study of the isentropic zonally averaged mass circulation during the First GARP Global Experiment. J. Atmos. Sci., 42, 15651579.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777.

  • Trenberth, K. E., , and D. P. Stepaniak, 2003a: Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Climate, 16, 36913705.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and D. P. Stepaniak, 2003b: Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J. Climate, 16, 37063722.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , D. P. Stepaniak, , and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13, 39693993.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , B. J. Soden, , A. T. Wittenberg, , I. M. Held, , A. Leetmaa, , and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441 (4), 7376.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. International Geophysics Series, Vol. 92, Academic Press, 504 pp.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., , M. H. England, , and W. P. Sijp, 2012: The ocean circulation in thermohaline coordinates. J. Phys. Oceanogr., 42, 708724.

  • Zika, J. D., , W. P. Sijp, , and M. H. England, 2013: Vertical heat transport by ocean circulation and the role of mechanical and haline forcing. J. Phys. Oceanogr., 43, 2095–2112.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 10
PDF Downloads 40 40 8

The Atmospheric General Circulation in Thermodynamical Coordinates

View More View Less
  • 1 Department of Meteorology, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
  • | 2 Department of Physics, University of Toronto, Toronto, Ontario, Canada
  • | 3 University of Southampton, National Oceanography Centre, Southampton, United Kingdom
© Get Permissions
Restricted access

Abstract

The zonal and meridional components of the atmospheric general circulation are used to define a global thermodynamic streamfunction in dry static energy versus latent heat coordinates. Diabatic motions in the tropical circulations and fluxes driven by midlatitude eddies are found to form a single, global thermodynamic cycle. Calculations based on the Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) dataset indicate that the cycle has a peak transport of 428 Sv (Sv ≡ 109 kg s−1). The thermodynamic cycle encapsulates a globally interconnected heat and water cycle comprising ascent of moist air where latent heat is converted into dry static energy, radiative cooling where dry air loses dry static energy, and a moistening branch where air is warmed and moistened. It approximately follows a tropical moist adiabat and is bounded by the Clausius–Clapeyron relationship for near-surface air. The variability of the atmospheric general circulation is related to ENSO events using reanalysis data from recent years (1979–2009) and historical simulations from the EC-Earth Consortium (EC-Earth) coupled climate model (1850–2005). The thermodynamic cycle in both EC-Earth and ERA-Interim widens and weakens with positive ENSO phases and narrows and strengthens during negative ENSO phases with a high correlation coefficient. Weakening in amplitude suggests a weakening of the large-scale circulation, while widening suggests an increase in mean tropical near-surface moist static energy.

Denotes Open Access content.

Corresponding author address: Joakim Kjellsson, Department of Meteorology, Svante Arrhenius väg 16C, S-106 91 Stockholm, Sweden. E-mail: joakim@misu.su.se

Abstract

The zonal and meridional components of the atmospheric general circulation are used to define a global thermodynamic streamfunction in dry static energy versus latent heat coordinates. Diabatic motions in the tropical circulations and fluxes driven by midlatitude eddies are found to form a single, global thermodynamic cycle. Calculations based on the Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) dataset indicate that the cycle has a peak transport of 428 Sv (Sv ≡ 109 kg s−1). The thermodynamic cycle encapsulates a globally interconnected heat and water cycle comprising ascent of moist air where latent heat is converted into dry static energy, radiative cooling where dry air loses dry static energy, and a moistening branch where air is warmed and moistened. It approximately follows a tropical moist adiabat and is bounded by the Clausius–Clapeyron relationship for near-surface air. The variability of the atmospheric general circulation is related to ENSO events using reanalysis data from recent years (1979–2009) and historical simulations from the EC-Earth Consortium (EC-Earth) coupled climate model (1850–2005). The thermodynamic cycle in both EC-Earth and ERA-Interim widens and weakens with positive ENSO phases and narrows and strengthens during negative ENSO phases with a high correlation coefficient. Weakening in amplitude suggests a weakening of the large-scale circulation, while widening suggests an increase in mean tropical near-surface moist static energy.

Denotes Open Access content.

Corresponding author address: Joakim Kjellsson, Department of Meteorology, Svante Arrhenius väg 16C, S-106 91 Stockholm, Sweden. E-mail: joakim@misu.su.se
Save