• Abalos, M., , W. J. Randel, , and E. Serrano, 2012: Variability in upwelling across the tropical tropopause and correlations with tracers in the lower stratosphere. Atmos. Chem. Phys., 12, 11 50511 517.

    • Search Google Scholar
    • Export Citation
  • Alcala, C. M., , and A. E. Dessler, 2002: Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. J. Geophys. Res., 107, 4792, doi:10.1029/2002JD002457.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission. Bull. Amer. Meteor. Soc., 89, 313333.

  • Bantzer, C. H., , and J. M. Wallace, 1996: Intraseasonal variability in tropical mean temperature and precipitation and their relation to the tropical 40–50 day oscillation. J. Atmos. Sci., 53, 30323045.

    • Search Google Scholar
    • Export Citation
  • Corti, T., , B. P. Luo, , T. Peter, , H. Vömel, , and Q. Fu, 2005: Mean radiative energy balance and vertical mass flux in the equatorial upper troposphere and lower stratosphere. Geophys. Res. Lett., 32, L06802, doi:10.1029/2004GL021889.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Dinh, T., , D. R. Durran, , and T. Ackerman, 2012: Cirrus and water vapor transport in the tropical tropopause layer—Part 1: A specific case modeling study. Atmos. Chem. Phys., 12, 97999815.

    • Search Google Scholar
    • Export Citation
  • Eguchi, N., , and M. Shiotani, 2004: Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere. J. Geophys. Res., 109, D12106, doi:10.1029/2003JD004314.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., , M. Loewenstein, , J. Podolske, , S. J. Oltmans, , and M. Proffitt, 1999: A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements. J. Geophys. Res., 104 (D18), 22 09522 102.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., , P. Bernath, , C. Boone, , G. Lesins, , N. Livesey, , A. M. Thompson, , K. Walker, , and J. C. Witte, 2006: Seasonal cycles of O3, CO, and convective outflow at the tropical tropopause. Geophys. Res. Lett., 33, L16802, doi:10.1029/2006GL026602.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , Y. Hu, , and Q. Yang, 2007: Identifying the top of the tropical tropopause layer from vertical mass flux analysis and CALIPSO lidar cloud observations. Geophys. Res. Lett., 34, L14813, doi:10.1029/2007GL030099.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., , A. E. Dessler, , T. J. Dunkerton, , I. Folkins, , Q. Fu, , and P. W. Mote, 2009a: Tropical tropopause layer. Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., , B. Legras, , A. Beljaars, , J.-J. Morcrette, , A. Simmons, , A. M. Tompkins, , and S. Uppala, 2009b: The diabatic heat budget of the upper troposphere and lower/mid stratosphere in ECMWF analyses. Quart. J. Roy. Meteor. Soc., 135, 2137.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., , K. Kita, , and T. Ogawa, 1998: Stratosphere-troposphere exchange of ozone associated with the equatorial Kelvin wave as observed with ozonesondes and rawinsondes. J. Geophys. Res., 103 (D15), 19 17319 182.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., , W. J. Randel, , S. Massie, , F. Wu, , W. G. Read, , and J. M. Russell III, 2001: El Niño as a natural experiment for studying the tropical tropopause region. J. Climate, 14, 33753392.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Grise, K. M., , and D. W. J. Thompson, 2012: Equatorial planetary waves and their signature in atmospheric variability. J. Atmos. Sci., 69, 857874.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., , and D. W. J. Thompson, 2013: On the signatures of equatorial and extratropical wave forcing in the tropical tropopause layer temperatures. J. Atmos. Sci., 70, 10841102.

    • Search Google Scholar
    • Export Citation
  • Heckley, W. A., , and A. E. Gill, 1984: Some simple analytical solutions to the problem of forced equatorial long waves. Quart. J. Roy. Meteor. Soc., 110, 203217.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237.

  • Highwood, E. J., , and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 15791604.

  • Holloway, T., , H. Levy II, , and P. Kasibhatla, 2000: Global distribution of carbon monoxide. J. Geophys. Res., 105 (D10), 12 12312 147.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1979: An Introduction to Dynamic Meteorology.Academic Press, 391 pp.

  • Holton, J. R., , and R. S. Lindzen, 1968: A note on “Kelvin” waves in the atmosphere. Mon. Wea. Rev., 96, 385386.

  • Kiladis, G. N., , K. H. Straub, , G. C. Reid, , and K. S. Gage, 2001: Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere. Quart. J. Roy. Meteor. Soc., 127, 19611983.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., and Coauthors, 1996: Initial results of radio occultation observations of Earth’s atmosphere using the Global Positioning System. Science, 271, 11071110.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., , G. A. Hajj, , J. T. Schofield, , R. P. Linfield, , and K. R. Hardy, 1997: Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res., 102 (D19), 23 42923 465.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1973: The standard error of time-averaged estimates of climatic means. J. Appl. Meteor., 12, 10661069.

  • Li, K.-F., , B. Tian, , D. E. Waliser, , M. J. Schwartz, , J. L. Neu, , J. R. Worden, , and Y. L. Yung, 2012: Vertical structure of MJO-related subtropical ozone variations from MLS, TES, and SHADOZ data. Atmos. Chem. Phys., 12, 425436.

    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., and Coauthors, 2008: Validation of Aura Microwave Limb Sounder O3 and CO observations in the upper troposphere and lower stratosphere. J. Geophys. Res., 113, D15S02, doi:10.1029/2007JD008805.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1987: Relationships between changes in the length of day and the 40- to 50-day oscillation in the tropics. J. Geophys. Res., 92 (D7), 83918399.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837.

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 627642.

  • Mote, P. W., , and T. J. Dunkerton, 2004: Kelvin wave signatures in stratospheric trace constituents. J. Geophys. Res., 109, D03101, doi:10.1029/2002JD003370.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , F. Wu, , and D. J. Gaffen, 2000: Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J. Geophys. Res., 105 (D12), 15 50915 523.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , M. Park, , F. Wu, , and N. Livesey, 2007: A large annual cycle in ozone above the tropical tropopause linked to the Brewer–Dobson circulation. J. Atmos. Sci., 64, 44794488.

    • Search Google Scholar
    • Export Citation
  • Read, W. G., and Coauthors, 2007: Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation. J. Geophys. Res., 112, D24S35, doi:10.1029/2007JD008752.

    • Search Google Scholar
    • Export Citation
  • Rui, H., , and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357379.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. J., , D. E. Waliser, , B. Tian, , D. L. Wu, , J. H. Jiang, , and W. G. Read, 2008: Characterization of MJO-related upper tropospheric hydrological processes using MLS. Geophys. Res. Lett., 35, L08812, doi:10.1029/2008GL033675.

    • Search Google Scholar
    • Export Citation
  • Takashima, H., , and M. Shiotani, 2007: Ozone variation in the tropical tropopause layer as seen from ozonesonde data. J. Geophys. Res., 112, D11123, doi:10.1029/2006JD008322.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , D. E. Waliser, , E. J. Fetzer, , B. H. Lambrigtsen, , Y. L. Yung, , and B. Wang, 2006: Vertical moist thermodynamic structure and spatial-temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 24622485.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , Y. L. Yung, , D. E. Waliser, , T. Tyranowski, , L. Kuai, , E. J. Fetzer, , and F. W. Irion, 2007: Intraseasonal variations of the tropical total ozone and their connection to the Madden-Julian Oscillation. Geophys. Res. Lett., 34, L08704, doi:10.1029/2007GL029451.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , C. O. Ao, , D. E. Waliser, , E. J. Fetzer, , A. J. Mannucci, , and J. Teixeira, 2012: Intraseasonal temperature variability in the upper troposphere and lower stratosphere from the GPS radio occultation measurements. J. Geophys. Res., 117, D15110, doi:10.1029/2012JD017715.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., , and J. M. Wallace, 2010: Annual, internannual, and intraseasonal variability of tropical tropopause transition layer cirrus. J. Atmos. Sci., 67, 30973112.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., , J. M. Wallace, , Q. Fu, , and T. P. Ackerman, 2010: Tropical tropopause transition layer cirrus as represented by CALIPSO lidar observations. J. Atmos. Sci., 67, 31133129.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and V. E. Kousky, 1968: Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25, 900907.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1972: Response of the tropical atmosphere to local, steady forcing. Mon. Wea. Rev., 100, 518541.

  • Weickmann, K. M., , G. N. Kiladis, , and P. D. Sardeshmukh, 1997: The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54, 14451461.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , W. H. Hunt, , and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
  • Wong, S., , and A. E. Dessler, 2007: Regulation of H2O and CO in the tropical tropopause layer by the Madden-Julian oscillation. J. Geophys. Res., 112, D14305, doi:10.1029/2006JD007940.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., , Q. Fu, , J. Austin, , A. Gettelman, , F. Li, , and H. Vömel, 2008: Observationally derived and general circulation model simulated tropical stratospheric upward mass fluxes. J. Geophys. Res., 113, D00B07, doi:10.1029/2008JD009945.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., , J. R. Holton, , and J. M. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci., 51, 169174.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., , S.-P. Ho, , S. Sokolovskiy, , and Y.-H. Kuo, 2012: Structural evolution of the Madden-Julian Oscillation from COSMIC radio occultation data. J. Geophys. Res., 117, D22108, doi:10.1029/2012JD017685.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhou, X., , and J. R. Holton, 2002: Intraseasonal variations of tropical cold-point tropopause temperatures. J. Climate, 15, 14601473.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 60 60 5
PDF Downloads 48 48 5

Observations of Temperature, Wind, Cirrus, and Trace Gases in the Tropical Tropopause Transition Layer during the MJO

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

Satellite observations of temperature, optically thin cirrus clouds, and trace gases derived from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC), Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and the Microwave Limb Sounder (MLS) are analyzed in combination with Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) wind and humidity fields in the tropical tropopause transition layer (TTL), using the Madden–Julian oscillation (MJO) as a carrier signal. MJO-related deep convection induces planetary-scale Kelvin and Rossby waves in the stably stratified TTL. Regions of ascent in these waves are associated with anomalously low temperatures, high radiative heating rates, enhanced cirrus occurrence, and high carbon monoxide and low ozone concentrations. Low water vapor mixing ratio anomalies lag the low temperature anomalies by about 1–2 weeks. The anomalies in all fields propagate eastward, circumnavigating the tropical belt over a roughly 40-day interval. Equatorial cross sections reveal that the anomalies tilt eastward with height in the TTL and propagate downward from the lower stratosphere into the upper troposphere.

As MJO-related convection moves into the western Pacific and dissipates, a fast-moving Kelvin wave flanked by Rossby waves propagates eastward across South America and Africa into the western Indian Ocean. The region of equatorial westerly wind anomalies behind the Kelvin wave front lengthens until it encompasses most of the tropics at the 150-hPa level, giving rise to equatorially symmetric, anomalously low zonal-mean temperature and water vapor mixing ratio and enhanced cirrus above about 100 hPa.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-13-0178.s1.

Corresponding author address: Katrina Virts, Department of Atmospheric Sciences, 408 ATG Bldg., Box 351640, Seattle, WA 98195-1640. E-mail: kvirts@uw.edu

Abstract

Satellite observations of temperature, optically thin cirrus clouds, and trace gases derived from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC), Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and the Microwave Limb Sounder (MLS) are analyzed in combination with Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) wind and humidity fields in the tropical tropopause transition layer (TTL), using the Madden–Julian oscillation (MJO) as a carrier signal. MJO-related deep convection induces planetary-scale Kelvin and Rossby waves in the stably stratified TTL. Regions of ascent in these waves are associated with anomalously low temperatures, high radiative heating rates, enhanced cirrus occurrence, and high carbon monoxide and low ozone concentrations. Low water vapor mixing ratio anomalies lag the low temperature anomalies by about 1–2 weeks. The anomalies in all fields propagate eastward, circumnavigating the tropical belt over a roughly 40-day interval. Equatorial cross sections reveal that the anomalies tilt eastward with height in the TTL and propagate downward from the lower stratosphere into the upper troposphere.

As MJO-related convection moves into the western Pacific and dissipates, a fast-moving Kelvin wave flanked by Rossby waves propagates eastward across South America and Africa into the western Indian Ocean. The region of equatorial westerly wind anomalies behind the Kelvin wave front lengthens until it encompasses most of the tropics at the 150-hPa level, giving rise to equatorially symmetric, anomalously low zonal-mean temperature and water vapor mixing ratio and enhanced cirrus above about 100 hPa.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-13-0178.s1.

Corresponding author address: Katrina Virts, Department of Atmospheric Sciences, 408 ATG Bldg., Box 351640, Seattle, WA 98195-1640. E-mail: kvirts@uw.edu

Supplementary Materials

    • Supplemental Materials (ZIP 33.91 MB)
Save