• Andersen, J. A., , and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 2782–2804.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., , and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci.,50, 2922–2939.

  • Bogenschutz, P. A., , and S. K. Krueger, 2013: A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models. J. Adv. Model. Earth Syst., 5, 195–211, doi:10.1002/jame.20018.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , M. E. Peters, , and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , P. N. Blossey, , and M. E. Peters, 2006: Interpretation of simple and cloud-resolving models of moist convection–radiation interaction with a mock-Walker circulation. Theor. Comput. Fluid Dyn.,20 (5–6), 421–442.

  • Bryan, G. H., 2008: Evaluation of the theoretical speed and depth of gravity currents using three-dimensional numerical simulations. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 10.1. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_141987.htm.]

  • Cheng, A., , K.-M. Xu, , and B. Stevens, 2010: Effects of resolution on the simulation of boundary-layer clouds and the partition of kinetic energy to subgrid scales. J. Adv. Model. Earth Syst., 2 (1), doi:10.3894/JAMES.2010.2.3.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , Y. Chen, , D. Kim, , and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 3755–3770.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , J. D. Neelin, , and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 1111–1143, doi:10.1002/qj.49712051902.

    • Search Google Scholar
    • Export Citation
  • Frenkel, Y., , A. J. Majda, , and B. Khouider, 2012: Using the stochastic multicloud model to improve tropical convective parameterization: A paradigm example. J. Atmos. Sci., 69, 10801105.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55, 32833298.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and M. W. Moncrieff, 2004: Moisture–convection feedback in the tropics. Quart. J. Roy. Meteor. Soc., 130, 30813104.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , J.-I. Yano, , and M. W. Moncrieff, 2000: Cloud resolving modeling of tropical circulations driven by large-scale SST gradients. J. Atmos. Sci., 57, 20222040.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Kemball-Cook, S. R., , and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793.

  • Khairoutdinov, M. F., , and D. A. Randall, 2003: Cloud-resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , J. Biello, , and A. J. Majda, 2010: A stochastic multicloud model for tropical convection. Commun. Math. Sci., 8, 187216.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , A. St-Cyr, , A. J. Majda, , and J. Tribbia, 2011: The MJO and convectively coupled waves in a coarse-resolution GCM with a simple multicloud parameterization. J. Atmos. Sci., 68, 240264.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , H. Ying, , A. J. Majda, , and S. N. Stechmann, 2012: Multiscale waves in an MJO background and convective momentum transport feedback. J. Atmos. Sci., 69, 915933.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , J. J. Hack, , G. B. Bonan, , B. A. Boville, , D. L. Williamson, , and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 11311149.

    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., , and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, doi:10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., , and D. E. Waliser, 2011: Intraseasonal Variability in the Atmosphere-Ocean Climate System. 2nd ed. Spinger-Praxis, 614 pp.

  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 2665–2690.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , and M. Moncrieff, 2001: Cumulus ensembles in shear: Implications for parameterizations. J. Atmos. Sci., 58, 28322842.

  • Madden, R., , and P. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., 2003: Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics, Vol. 9, American Mathematical Society, 234 pp.

  • Majda, A. J., 2007: New multiscale models and self-similarity in tropical convection. J. Atmos. Sci., 64, 13931404.

  • Majda, A. J., , and J. A. Biello, 2004: A multiscale model for the intraseasonal oscillation. Proc. Natl. Acad. Sci. USA, 10, 47364741.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. Stechmann, 2011: Nonlinear dynamics and regional variation in the MJO skeleton. J. Atmos. Sci., 68, 30533071.

  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711–729.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , S. Tulich, , J.-L. Lin, , and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and Coauthors, 1996: Simulation of a stratocumulus-topped planetary boundary layer: Intercomparison among different numerical codes. Bull. Amer. Meteor. Soc., 77, 261–278.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1981: A theory of organized steady convection and its transport properties. Quart. J. Roy. Meteor. Soc., 107, 2950.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypical dynamical models, mass and momentum flux theory, and parameterization. Quart. J. Roy. Meteor. Soc., 118, 819–850.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., , M. Shapiro, , J. Slingo, , and F. Molteni, 2007: Collaborative research at the intersection of weather and climate. WMO Bull., 56, 204–211.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., , D. M. W. Frierson, , and A. J. Majda, 2008: Precipitation fronts and the reflection and transmission of tropical disturbances. Quart. J. Roy. Meteor. Soc., 134, 913–930, doi:10.1002/qj.250.

    • Search Google Scholar
    • Export Citation
  • Petch, J. C., , P. N. Blossey, , and C. S. Bretherton, 2008: Differences in the lower troposphere in two- and three-dimensional cloud-resolving model simulations of deep convection. Quart. J. Roy. Meteor. Soc., 134, 1941–1946, doi:10.1002/qj.315.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., , and L. J. Donner, 2006: Cloud microphysics, radiation and vertical velocities in two- and three-dimensional simulations of deep convection. Quart. J. Roy. Meteor. Soc., 132, 3011–3033, doi:10.1256/qj.05.171.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and F. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046.

  • Raymond, D. J., , S. L. Sessions, , A. H. Sobel, , and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1 (3), doi:10.3894/JAMES.2009.1.9.

    • Search Google Scholar
    • Export Citation
  • Riley, E. M., , B. E. Mapes, , and S. N. Tulich, 2011: Clouds associated with the Madden–Julian oscillation: A new perspective from CloudSat. J. Atmos. Sci., 68, 3032–3051.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , M. L. Weisman, , and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 2563–2584.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 2006: Multidimensional positive definite advection transport algorithm: An overview. Int. J. Numer. Methods Fluids, 50, 11231144, doi:10.1002/fld.1071.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., , and L. G. Margolin, 1997: On forward-in-time differencing for fluids: An Eulerian/semi-Lagrangian nonhydrostatic model for stratified flows. Atmos.–Ocean, 35, 127152.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2000: The impact of dimensionality on long-term cloud-resolving model simulations. Mon. Wea. Rev.,128, 1521–1535.

  • Tulich, S. N., , and B. E. Mapes, 2008: Multiscale convective wave disturbances in the tropics: Insights from a two-dimensional cloud-resolving model. J. Atmos. Sci., 65, 140–155.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., , D. A. Randall, , and B. E. Mapes, 2007: Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci., 64, 1210–1229.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Xing, Y., , A. J. Majda, , and W. W. Grabowski, 2009: New efficient sparse space–time algorithms for superparameterization on mesoscales. Mon. Wea. Rev., 137, 43074324.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., , and R. Plant, 2012: Finite departure from convective quasi-equilibrium: Periodic cycle and discharge–recharge mechanism. Quart. J. Roy. Meteor. Soc., 138, 626637, doi:10.1002/qj.957.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., , W. W. Grabowski, , and M. W. Moncrieff, 2002a: Mean-state convective circulations over large-scale tropical SST gradients. J. Atmos. Sci., 59, 1578–1592.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., , M. W. Moncrieff, , and W. W. Grabowski, 2002b: Walker-type mean circulations and convectively coupled tropical waves as an interacting system. J. Atmos. Sci., 59, 1566–1577.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 14
PDF Downloads 35 35 5

Multiscale Interactions in an Idealized Walker Circulation: Mean Circulation and Intraseasonal Variability

View More View Less
  • 1 Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

A high-resolution cloud-resolving model (CRM) simulation is developed here for a two-dimensional Walker circulation over a planetary-scale domain of 40 000 km for an extended period of several hundred days. The Walker cell emerges as the time-averaged statistical steady state with a prescribed sinusoidal sea surface temperature (SST) pattern with a mean temperature of 301.15 K and a horizontal variation of 4 K. The circulation exhibits intraseasonal variability on a time scale of about 20 days with quasi-periodic intensification of the circulation and broadening of the convective regime. This variability is closely tied to synoptic-scale systems associated with expansion and contraction of the Walker circulation. An index for the low-frequency variability is developed using an empirical orthogonal function (EOF) analysis and by regressing various dynamic fields on this index. The low-frequency oscillation has four main stages: a suppressed stage with strengthened midlevel circulation, an intensification phase, an active phase with strong upper-level circulation, and a weakening phase. Various physical processes occurring at these stages are discussed as well as the impact of organized convective systems on the large-scale flow.

Corresponding author address: Joanna Slawinska, Courant Institute of Mathematical Sciences, Center for Atmosphere Ocean Science, New York University, 251 Mercer St., New York, NY 10012. E-mail: joannaslawinska@nyu.edu

Abstract

A high-resolution cloud-resolving model (CRM) simulation is developed here for a two-dimensional Walker circulation over a planetary-scale domain of 40 000 km for an extended period of several hundred days. The Walker cell emerges as the time-averaged statistical steady state with a prescribed sinusoidal sea surface temperature (SST) pattern with a mean temperature of 301.15 K and a horizontal variation of 4 K. The circulation exhibits intraseasonal variability on a time scale of about 20 days with quasi-periodic intensification of the circulation and broadening of the convective regime. This variability is closely tied to synoptic-scale systems associated with expansion and contraction of the Walker circulation. An index for the low-frequency variability is developed using an empirical orthogonal function (EOF) analysis and by regressing various dynamic fields on this index. The low-frequency oscillation has four main stages: a suppressed stage with strengthened midlevel circulation, an intensification phase, an active phase with strong upper-level circulation, and a weakening phase. Various physical processes occurring at these stages are discussed as well as the impact of organized convective systems on the large-scale flow.

Corresponding author address: Joanna Slawinska, Courant Institute of Mathematical Sciences, Center for Atmosphere Ocean Science, New York University, 251 Mercer St., New York, NY 10012. E-mail: joannaslawinska@nyu.edu
Save