• Albrecht, B. A., , C. S. Bretherton, , D. W. Johnson, , W. H. Schubert, , and A. S. Frisch, 1995: The Atlantic stratocumulus transition experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part I: Methodology and homogeneous biases. J. Atmos. Sci., 53, 22892303.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., , B. A. Wielicki, , and L. Parker, 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: Validation using satellite data. J. Atmos. Sci., 53, 23042316.

    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., , S. J. Abel, , P. G. Hill, , and C. J. Morcrette, 2014: Spatial variability of liquid cloud and rain: Observations and microphysical effects. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2140, in press.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., , W. Ridgway, , W. J. Wiscombe, , and T. L. Bell, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 24342455.

    • Search Google Scholar
    • Export Citation
  • Cheng, A., , and K.-M. Xu, 2009: A PDF-based microphysics parameterization for simulation of drizzling boundary layer clouds. J. Atmos. Sci., 66, 23172334.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. M., , C. S. Bretherton, , and S. E. Yuter, 2005: Mesoscale variability and drizzle in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37923807.

    • Search Google Scholar
    • Export Citation
  • Davis, A., , A. Marshak, , W. Wiscombe, , and R. Cahalan, 1996: Scale invariance of liquid water distributions in marine stratocumulus. Part I: Spectral properties and stationarity issues. J. Atmos. Sci., 53, 15381558.

    • Search Google Scholar
    • Export Citation
  • Eck, M., , and L. Mahrt, 1991: A formulation for boundary-layer cloud cover. Ann. Geophys., 9, 716724.

  • Golaz, J.-C., , V. E. Larson, , and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551.

    • Search Google Scholar
    • Export Citation
  • Grossman, R. L., 1984: Bivariate conditional sampling of moisture flux over a tropical ocean. J. Atmos. Sci., 41, 32383253.

  • Jeffery, C. A., , and P. H. Austin, 2003: Unified treatment of thermodynamic and optical variability in a simple model of unresolved low clouds. J. Atmos. Sci., 60, 16211631.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and Y. L. Kogan, 1999: A large eddy simulation model with explicit microphysics: Validation against aircraft observations of a stratocumulus-topped boundary layer. J. Atmos. Sci., 56, 21152131.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and Y. L. Kogan, 2000: A new cloud physics parameterization for large-eddy simulation models of marine stratocumulus. Mon. Wea. Rev., 128, 229243.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 2013: A cumulus cloud microphysics parameterization for cloud-resolving models. J. Atmos. Sci., 70, 14231436.

  • Kogan, Y. L., , M. P. Khairoutdinov, , D. K. Lilly, , Z. N. Kogan, , and Q. Liu, 1995: Modeling of stratocumulus cloud layers in a large eddy simulation model with explicit microphysics. J. Atmos. Sci., 52, 29232940.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., , D. B. Mechem, , and K. Choi, 2012: Effects of sea-salt aerosols on precipitation in simulations of shallow cumulus. J. Atmos. Sci., 69, 463483.

    • Search Google Scholar
    • Export Citation
  • Lappen, C.-L., , and D. A. Randall, 2001: Towards a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass-flux model. J. Atmos. Sci., 58, 20212036.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., , and J.-C. Golaz, 2005: Using probability density functions to derive consistent closure relationships among higher-order moments. Mon. Wea. Rev., 133, 10231042.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., , and B. M. Griffin, 2013: Analytic upscaling of a local microphysics scheme. Part I: Derivation. Quart. J. Roy. Meteor. Soc., 139, 4657.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., , R. Wood, , P. R. Field, , J.-C. Golaz, , T. H. Vonder Harr, , and W. R. Cotton, 2001a: Systematic biases in the microphysics and thermodynamics of numerical models that ignore subgrid-scale variability. J. Atmos. Sci., 58, 11171128.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., , R. Wood, , P. R. Field, , J.-C. Golaz, , T. H. Vonder Harr, , and W. R. Cotton, 2001b: Small-scale and mesoscale variability of scalars in cloud boundary layers: One-dimensional probability density functions. J. Atmos. Sci., 58, 19781994.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., , J.-C. Golaz, , and W. R. Cotton, 2002: Small-scale and mesoscale variability in cloudy boundary layers: Joint probability density functions. J. Atmos. Sci., 59, 35193539.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., , D. P. Schanen, , M. Wang, , M. Ovchinnikov, , and S. Ghan, 2012: PDF parameterization of boundary layer clouds in models with horizontal grid spacings from 2 to 16 km. Mon. Wea. Rev., 140, 285306.

    • Search Google Scholar
    • Export Citation
  • Lean, H. W., , P. A. Clark, , M. Dixon, , N. M. Roberts, , A. Fitch, , R. Forbes, , and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M., , H. Morrison, , and A. Gettelman, 2013: Microphysical implications of cloud-precipitation covariance derived from satellite remote sensing. J. Geophys. Res. Atmos., 118, 65216533, doi:10.1002/jgrd.50347.

    • Search Google Scholar
    • Export Citation
  • Lee, S., , B. H. Kahn, , and J. Teixeira, 2010: Characterization of cloud liquid water content distributions from CloudSat. J. Geophys. Res., 115, D20203, doi:10.1029/2009JD013272.

    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., , and S. Yoh, 1993: Binormal model of ensemble partial cloudiness. J. Atmos. Sci., 50, 12281237.

  • Mechem, D. B., , P. C. Robinson, , and Y. L. Kogan, 2006: Processing of cloud condensation nuclei by collision-coalescence in a mesoscale model. J. Geophys. Res., 111, D18204, doi:10.1029/2006JD007183.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., , and S. A. Klein, 2000: Unresolved spatial variability and microphysical process rates in large-scale models. J. Geophys. Res., 105, 27 05927 065.

    • Search Google Scholar
    • Export Citation
  • Price, J. D., , and R. Wood, 2002: Comparison of probability density functions for total specific humidity and saturation deficit humidity, and consequences for cloud parameterization. Quart. J. Roy. Meteor. Soc., 128, 20592072.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , Q. Shao, , and C.-H. Moeng, 1992: A second-order bulk boundary-layer model. J. Atmos. Sci., 49, 19031923.

  • Rickenbach, T. M., , and S. A. Rutledge, 1998: Convection in TOGA COARE: Horizontal scale, morphology, and rainfall production. J. Atmos. Sci., 55, 27152729.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., , T. C. Yeh, , J. S. Malkus, , and N. E. la Seur, 1951: The north-east trade of the Pacific Ocean. Quart. J. Roy. Meteor. Soc., 77, 598626.

    • Search Google Scholar
    • Export Citation
  • Savic-Jovcic, V., , and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65, 15871605.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., , and K. Nakamura, 2008: TRMM radar observations of shallow precipitation over the tropical oceans. J. Climate, 13, 41074124.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219.

    • Search Google Scholar
    • Export Citation
  • Sommeria, G., , and J. W. Deardorff, 1977: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci., 34, 344355.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2007: On the growth of layers of nonprecipitating cumulus convection. J. Atmos. Sci., 64, 29162931.

  • Terasaki, K., , H. L. Tanaka, , and M. Satoh, 2009: Characteristics of the kinetic energy spectrum of NICAM model atmosphere. SOLA, 5, 180183.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59, 19171942.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, M06001, doi:10.1029/2011MS000056.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , and G. Feingold, 2009: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci., 66, 32373256.

    • Search Google Scholar
    • Export Citation
  • Wang, S., , and B. Stevens, 2000: Top-hat representation of turbulence statistics in cloud-topped boundary layers: A large eddy simulation study. J. Atmos. Sci., 57, 423441.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., , and L. Parker, 1994: Frequency distributions of cloud liquid water path in oceanic boundary layer cloud as a function of regional cloud fraction. Preprints, Eighth Conf. on Atmospheric Radiation, Nashville, TN, Amer. Meteor. Soc., 415417.

  • Wood, R., , and P. R. Field, 2000: Relationships between total water, condensed water and cloud fraction examined using aircraft data. J. Atmos. Sci., 57, 18881905.

    • Search Google Scholar
    • Export Citation
  • Wood, R., , P. R. Field, , and W. R. Cotton, 2002: Autoconversion rate bias in stratiform boundary layer cloud parameterizations. Atmos. Res., 65, 109128.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-M., , B. Stevens, , and A. Arakawa, 2009: What controls the transition from shallow to deep convection? J. Atmos. Sci., 66, 17931806.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., , and S. K. Krueger, 1991: Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon. Wea. Rev., 119, 342367.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., , and D. A. Randall, 1996: Evaluation of statistically based cloudiness parameterizations used in climate models. J. Atmos. Sci., 53, 31033119.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., , and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distribution of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 69 69 2
PDF Downloads 24 24 1

A PDF-Based Microphysics Parameterization for Shallow Cumulus Clouds

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 2 Atmospheric Science Program, Department of Geography, University of Kansas, Lawrence, Kansas
© Get Permissions
Restricted access

Abstract

Unbiased calculations of microphysical process rates such as autoconversion and accretion in mesoscale numerical weather prediction models require that subgrid-scale (SGS) variability over the model grid volume be taken into account. This variability can be expressed as probability distribution functions (PDFs) of microphysical variables. Using dynamically balanced large-eddy simulation (LES) model results from a case of marine trade cumulus, the authors develop PDFs of the cloud water, droplet concentration, and rainwater variables (qc, Nc, and qr). Both 1D and 2D joint PDFs (JPDFs) are presented. The authors demonstrate that accounting for the JPDFs results in more accurate process rates for a regional-model grid size. Bias in autoconversion and accretion rates are presented, assuming different formulations of the JPDFs. Approximating the 2D PDF using a product of individual 1D PDFs overestimates the autoconversion rates by an order of magnitude, whereas neglecting the SGS variability altogether results in a drastic underestimate of the grid-mean autoconversion rate. PDF assumptions have a much smaller impact on accretion, largely because of the near-linear dependence of the variables in the accretion rate formula and the relatively weak correlation between qc and qr over the small LES grid volumes. The latter is attributed to the spatial decorrelation in the vertical between the two fields. Although the full PDFs are both height and time dependent, results suggest that fixed-in-time and fixed-in-height PDFs give an acceptable level of accuracy, especially for the crucial autoconversion calculation.

Corresponding author address: Yefim Kogan, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, 120 David L. Boren Blvd., Suite 2100, Norman, OK 73072-7304. E-mail: ykogan@ou.edu

Abstract

Unbiased calculations of microphysical process rates such as autoconversion and accretion in mesoscale numerical weather prediction models require that subgrid-scale (SGS) variability over the model grid volume be taken into account. This variability can be expressed as probability distribution functions (PDFs) of microphysical variables. Using dynamically balanced large-eddy simulation (LES) model results from a case of marine trade cumulus, the authors develop PDFs of the cloud water, droplet concentration, and rainwater variables (qc, Nc, and qr). Both 1D and 2D joint PDFs (JPDFs) are presented. The authors demonstrate that accounting for the JPDFs results in more accurate process rates for a regional-model grid size. Bias in autoconversion and accretion rates are presented, assuming different formulations of the JPDFs. Approximating the 2D PDF using a product of individual 1D PDFs overestimates the autoconversion rates by an order of magnitude, whereas neglecting the SGS variability altogether results in a drastic underestimate of the grid-mean autoconversion rate. PDF assumptions have a much smaller impact on accretion, largely because of the near-linear dependence of the variables in the accretion rate formula and the relatively weak correlation between qc and qr over the small LES grid volumes. The latter is attributed to the spatial decorrelation in the vertical between the two fields. Although the full PDFs are both height and time dependent, results suggest that fixed-in-time and fixed-in-height PDFs give an acceptable level of accuracy, especially for the crucial autoconversion calculation.

Corresponding author address: Yefim Kogan, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, 120 David L. Boren Blvd., Suite 2100, Norman, OK 73072-7304. E-mail: ykogan@ou.edu
Save