• Adlerman, E. J., , K. K. Droegemeier, , and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 20452069.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., , M. L. Weisman, , and L. J. Wicker, 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127, 29102927.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053.

  • Brandes, E. A., 1984: Vertical vorticity generation and mesocyclone sustenance in tornadic thunderstorms: The observational evidence. Mon. Wea. Rev., 112, 22532269.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., , and R. B. Wilhelmson, 1993: Hodograph curvature and updraft intensity in numerically modeled supercells. J. Atmos. Sci., 50, 18241833.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., , C. A. Doswell III, , and J. Cooper, 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606618.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., , B. A. Klimowski, , J. W. Zeitler, , R. L. Thompson, , and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., , M. D. Parker, , and L. J. Wicker, 2012: Uncertainties in trajectory calculations within near-surface mesocyclones of simulated supercells. Mon. Wea. Rev., 140, 29592966.

    • Search Google Scholar
    • Export Citation
  • Darkow, G. L., 1969: An analysis of over sixty tornado proximity soundings. Preprints, Sixth Conf. on Severe Local Storms, Chicago, IL, Amer. Meteor. Soc., 218–221.

  • Davies, J. M., , and R. H. Johns, 1993: Some wind and instability parameters associated with strong and violent tornadoes: 1. Wind shear and helicity. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 573–582.

  • Davies-Jones, R. P., 2008: Can a descending rain curtain in a supercell instigate tornadogenesis barotropically? J. Atmos. Sci., 65, 24692497.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., , and H. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105–114.

  • Dawson, D. T., II, , M. Xue, , J. A. Milbrandt, , and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., , and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625629.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., , M. S. Gilmore, , E. R. Mansell, , L. J. Wicker, , and J. M. Straka, 2006: Electrification and lightning in an idealized boundary-crossing supercell simulation of 2 June 1995. Mon. Wea. Rev., 134, 31493172.

    • Search Google Scholar
    • Export Citation
  • Finley, C. A., , B. D. Lee, , M. Grzych, , C. D. Karstens, , and T. M. Samaras, 2010: Mobile mesonet observations of the rear-flank downdraft evolution associated with a violent tornado near Bowdle, SD on 22 May 2010. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc, 8A.2. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_176132.htm.]

  • Gilmore, M. S., , J. M. Straka, , and E. N. Rasmussen, 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132, 18971916.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., , L. Orf, , R. B. Wilhelmson, , J. M. Straka, , and E. N. Rasmussen, 2006: The role of hook echo microbursts in simulated tornadic supercells. Part II: Sensitivity to microphysics parameterization. Preprints, 23rd Conf. Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 13.3. [Available online at https://ams.confex.com/ams/23SLS/techprogram/paper_115384.htm.]

  • Grasso, L. D., , and W. R. Cotton, 1995: Numerical simulation of a tornado vortex. J. Atmos. Sci., 52, 11921203.

  • Grzych, M. L., , B. D. Lee, , and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from project ANSWERS. Mon. Wea. Rev., 135, 240246.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19, 369402.

  • Klemp, J. B., , and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377.

  • Kumjian, M. R., 2011: Precipitation properties of supercell hook echoes. Electron. J. Severe Storms Meteor., 6 (5), 121.

  • Kumjian, M. R., , and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol, 47, 19401961.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., , and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66, 667685.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., , and R. B. Wilhelmson, 1997: The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary. J. Atmos. Sci., 54, 3260.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104, 133142.

  • Maddox, R. A., , L. Ray Hoxit, , and C. F. Chappell, 1980: A study of tornadic thunderstorm interactions with thermal boundaries. Mon. Wea. Rev., 108, 322336.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., , E. N. Rasmussen, , and J. M. Straka, 1998: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13, 852859.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., , E. N. Rasmussen, , and J. M. Straka, 2002: Direct thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., , E. N. Rasmussen, , and J. M. Straka, 2003: Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations. J. Atmos. Sci., 60, 795823.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., , E. N. Rasmussen, , J. M. Straka, , R. Davies-Jones, , Y. Richardson, , and R. J. Trapp, 2008: Vortex lines within low-level mesocyclones obtained from pseudo-dual-Doppler radar observations. Mon. Wea. Rev., 136, 35133535.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., , M. Majcen, , Y. Richardson, , J. Marquis, , and J. Wurman, 2011: Characteristics of the wind field in three nontornadic low-level mesocyclone observed by the Doppler on wheels radars. Electron. J. Severe Storms Meteor.,6 (3), 1–48.

  • Marquis, J., , Y. Richardson, , P. Markowski, , D. Dowell, , and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 50175043.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., , and M. L. Weisman, 1996: Simulations of shallow supercell storms in landfalling hurricane environments. Mon. Wea. Rev., 124, 408429.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., , and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129, 664687.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., , and M. S. Gilmore, 2012a: Convective initiation in an idealized cloud model using an updraft nudging technique. Mon. Wea. Rev., 140, 36993705.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., , and M. S. Gilmore, 2012b: Environmental factors influential to the duration and intensity of tornadoes in simulated supercells. Geophys. Res. Lett., 39, L17802, doi:10.1029/2012GL053041.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., , M. A. Askelson, , and M. S. Gilmore, 2012a: Influence of low-level thermodynamic structure on the downdraft properties of simulated supercells. Mon. Wea. Rev., 140, 25752589.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., , M. S. Gilmore, , R. L. Thompson, , R. Edwards, , and R. B. Wilhelmson, 2012b: Comparison of objective supercell identification techniques using an idealized cloud model. Mon. Wea. Rev., 140, 20902102.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., , and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164.

    • Search Google Scholar
    • Export Citation
  • Richardson, Y. P., , K. K. Droegemeier, , and R. P. Davies-Jones, 2007: The influence of horizontal environmental variability on numerically simulated convective storms. Part I: Variation in vertical shear. Mon. Wea. Rev., 135, 34293455.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151.

    • Search Google Scholar
    • Export Citation
  • Shabbott, C. J., , and P. M. Markowski, 2006: Surface in situ observations within the outflow of forward-flank downdrafts of supercell thunderstorms. Mon. Wea. Rev., 134, 14221441.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164.

  • Snook, N., , and M. Xue, 2008: Effects of microphysical drop size distribution on tornadogensis in supercell thunderstorms. Geophys. Res. Lett., 35, L24803, doi:10.1029/2008GL035866.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 17521773.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., , E. N. Rasmussen, , R. P. Davies-Jones, , and P. M. Markowski, 2007: An observational and idealized numerical examination of low-level counter-rotating vortices towards the rear flank of supercells. Electron. J. Severe Storms Meteor.,2 (8), 1–22.

  • Thompson, R. L., , R. Edwards, , J. A. Hart, , K. L. Elmore, , and P. M. Markowski, 2003: Close proximity soundings within supercell environments obtained from the rapid update cycle. Wea. Forecasting, 18, 12431261.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., , C. M. Mead, , and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., , B. T. Smith, , J. S. Grams, , A. R. Dean, , and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27,11361154.

    • Search Google Scholar
    • Export Citation
  • Togstad, W. E., , J. M. Davies, , S. J. Corfidi, , D. R. Bright, , and A. R. Dean, 2011: Conditional probability estimation for significant tornadoes based on Rapid Update Cycle (RUC) profiles. Wea. Forecasting, 26, 729743.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., 1999: Observations of nontornadic low-Level mesocyclones and attendant tornadogenesis failure during VORTEX. Mon. Wea. Rev., 127, 16931705.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., , and B. H. Fiedler, 1995: Tornado-like vortexgenesis in a simplified numerical model. J. Atmos. Sci., 52, 37573778.

  • Wakimoto, R. M., , and H. Cai, 2000: Analysis of a nontornadic storm during VORTEX 95. Mon. Wea. Rev., 128, 565592.

  • Walko, R. L., 1993: Tornado spin-up beneath a convective cell: Required basic structure of the near-field boundary layer winds. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 89–95.

  • Weisman, M. L., , and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., , and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., , E. N. Rasmussen, , T. R. Shepherd, , A. I. Watson, , and J. M. Straka, 2001: The evolution of low-level rotation in the 29 May 1994 Newcastle–Graham, Texas, storm complex during VORTEX. Mon. Wea. Rev., 129, 13391368.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 189 189 54
PDF Downloads 180 180 50

Vorticity Evolution Leading to Tornadogenesis and Tornadogenesis Failure in Simulated Supercells

View More View Less
  • 1 Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota
© Get Permissions
Restricted access

Abstract

A three-dimensional idealized cloud model was used to study the storm-scale differences between simulated supercells that produce tornado-like vortices and those that do not. Each simulation was initialized with a different Rapid Update Cycle, version 2 (RUC-2), sounding that was associated with tornadic and nontornadic supercells in nature. The focus is an analysis of vorticity along backward-integrated trajectories leading up to tornadogenesis (19 simulations) and tornadogenesis failure (14 simulations). In so doing, the differences between the nontornadic and tornadic cases can be explored in relation to their associated environmental sounding.

Backward-integrated trajectories seeded in the near-surface circulation indicate that the largest differences in vertical vorticity production between the tornadic and nontornadic simulations occur in parcels that descend to the surface from aloft (i.e., descending). Thus, the results from this study support the hypothesis that descending air in the rear of the storm is crucial to tornadogenesis. In the tornadic simulations, the descending parcels experience more negative vertical vorticity production during descent and larger tilting of horizontal vorticity into positive vertical vorticity after reaching the surface, owing to stronger horizontal gradients of vertical velocity. The larger vertical velocities experienced by the trajectories just prior to tornadogenesis in the tornadic simulations are associated with environmental soundings of larger CAPE, smaller convective inhibition (CIN), and larger 0–1-km storm-relative environmental helicity. Furthermore, in contrast with what might be expected from previous works, trajectories entering the incipient tornadic circulations are more negatively buoyant than those entering the nontornadic circulations.

Corresponding author address: Jason Naylor, NorthWest Research Associates, 3380 Mitchell Lane, Boulder, CO 80301. E-mail: jnaylor@nwra.com

Abstract

A three-dimensional idealized cloud model was used to study the storm-scale differences between simulated supercells that produce tornado-like vortices and those that do not. Each simulation was initialized with a different Rapid Update Cycle, version 2 (RUC-2), sounding that was associated with tornadic and nontornadic supercells in nature. The focus is an analysis of vorticity along backward-integrated trajectories leading up to tornadogenesis (19 simulations) and tornadogenesis failure (14 simulations). In so doing, the differences between the nontornadic and tornadic cases can be explored in relation to their associated environmental sounding.

Backward-integrated trajectories seeded in the near-surface circulation indicate that the largest differences in vertical vorticity production between the tornadic and nontornadic simulations occur in parcels that descend to the surface from aloft (i.e., descending). Thus, the results from this study support the hypothesis that descending air in the rear of the storm is crucial to tornadogenesis. In the tornadic simulations, the descending parcels experience more negative vertical vorticity production during descent and larger tilting of horizontal vorticity into positive vertical vorticity after reaching the surface, owing to stronger horizontal gradients of vertical velocity. The larger vertical velocities experienced by the trajectories just prior to tornadogenesis in the tornadic simulations are associated with environmental soundings of larger CAPE, smaller convective inhibition (CIN), and larger 0–1-km storm-relative environmental helicity. Furthermore, in contrast with what might be expected from previous works, trajectories entering the incipient tornadic circulations are more negatively buoyant than those entering the nontornadic circulations.

Corresponding author address: Jason Naylor, NorthWest Research Associates, 3380 Mitchell Lane, Boulder, CO 80301. E-mail: jnaylor@nwra.com
Save